def get_property_inflation_values(start, end): collection = jsonstat.from_url('https://statbank.cso.ie/StatbankServices/StatbankServices.svc/jsonservice/responseinstance/HPM06', 'tttt.json') df = collection.dataset(0).to_data_frame() con = df['Type of Residential Property'] == 'Dublin - all residential properties' con1 = df['Month'] == start con2 = df.Statistic == 'Residential Property Price Index (Base Jan 2005 = 100)' s_dub = df[con & con1 & con2]['Value'].values[0] con = df['Type of Residential Property'] == 'National excluding Dublin - all residential properties' con1 = df['Month'] == start con2 = df.Statistic == 'Residential Property Price Index (Base Jan 2005 = 100)' s_out = df[con & con1 & con2]['Value'].values[0] con = df['Type of Residential Property'] == 'Dublin - all residential properties' con1 = df['Month'] == end con2 = df.Statistic == 'Residential Property Price Index (Base Jan 2005 = 100)' e_dub = df[con & con1 & con2]['Value'].values[0] con = df['Type of Residential Property'] == 'National excluding Dublin - all residential properties' con1 = df['Month'] == end con2 = df.Statistic == 'Residential Property Price Index (Base Jan 2005 = 100)' e_out = df[con & con1 & con2]['Value'].values[0] return s_dub, e_dub, s_out, e_out
def test(uri, filename): print("downloading data from '{}'".format(uri)) # extract collection collection = jsonstat.from_url(uri, filename) print(collection) # extract dataset contained into collection ds = collection.dataset('nama_gdp_c') print(ds) # show some values v = ds.data(geo="IT", time="2011") print("IT gdp in 2011 was {}".format(v))
def test(uri, filename): # extract collection print("downloading data from '{}'".format(uri)) collection = jsonstat.from_url(uri, filename) print(collection) # extract dataset contained into collection ds = collection.dataset(0) print(ds) # show some values v = ds.data(0) lcat = ds.idx_as_lcat(0) print("{} -> {}".format(lcat, v.value))
def info(cache_dir, args): if len(args) == 0: args = ['http://json-stat.org/samples/oecd-canada-col.json'] d = jsonstat.cache_dir(cache_dir) print("downloaded file(s) are stored into '{}'\n".format(d)) for arg in args: if arg.startswith("http"): print("download '{}'".format(arg)) o = jsonstat.from_url(arg) else: print("reading '{}'".format(arg)) o = jsonstat.from_file(arg) print(o) if isinstance(o, jsonstat.JsonStatCollection): print("\nfirst dataset:\n") print(o.dataset(0))
import pandas as pd import jsonstat import matplotlib.pyplot as plt import numpy as np import seaborn as sns url = ( 'http://www.cso.ie/StatbankServices/StatbankServices.svc/jsonservice/responseinstance/TEM20' ) r = requests.get(url) json_data = r.json() for key, value in json_data.items(): print(key + ':', value) print(json_data.keys()) data = jsonstat.from_url(url) print(data) mcar = data.dataset(0) print(mcar) df = mcar.to_data_frame() print(df.head(10)) print(df.tail(10)) print(df.dtypes) print(df.sort_values("Make and Model", ascending=False)) Car = df['Make and Model'] print(Car) print(max(Car)) print(min(Car)) print(list(Car)) df1 = df['Make and Model'].value_counts() print(df.shape)
import requests import pandas as pd import jsonstat import os import matplotlib.pyplot as plt import numpy as np import seaborn as sns url = url = 'https://ws.cso.ie/public/api.restful/PxStat.Data.Cube_API.ReadDataset/TEM22/JSON-stat/1.0/' collection = jsonstat.from_url(url) #print(collection) mcar = collection.dataset(0) #print(mcar) for d in mcar.dimensions(): print(d) #print(mcar.value) #print(mcar.value(C02437V02947= "Ford")) df = mcar.to_data_frame() #print(df) #print(df.head()) #print(df.dtypes) Car = df['Car Make'] print(Car.head) print()rint(max(Car)) print(min(Car)) print(list(Car)) finalcarList=np.unique(Car).tolist() print(finalcarList)