def test_jug_execute_simple(): N = 1024 random.seed(232) A = [False for i in range(N)] def setAi(i): A[i] = True setall = [Task(setAi, i) for i in range(N)] store = dict_store() jug.task.Task.store = store simple_execute() assert False not in A assert max(store.counts.values()) < 4
def test_jug_invalidate(): def setAi(i): A[i] = True N = 1024 A = [False for i in range(N)] setall = [Task(setAi, i) for i in range(N)] store = dict_store() jug.task.Task.store = store for t in setall: t.run() opts = Options(default_options) opts.invalid_name = setall[0].name jug.subcommands.invalidate.invalidate(store, opts) assert not list(store.store.keys()), list(store.store.keys()) jug.task.Task.store = dict_store()
def test_jug_execute_deps(): N = 256 random.seed(234) A = [False for i in range(N)] def setAi(i, other): A[i] = True idxs = list(range(N)) random.shuffle(idxs) prev = None for idx in idxs: prev = Task(setAi, idx, prev) store = dict_store() jug.task.Task.store = store simple_execute() assert False not in A assert max(store.counts.values()) < 5
_compare('mean_t',mean_t,refs) _compare('rc_t',rc_t,refs) #_compare('watershed:direct',water_direct,refs) #_compare('watershed:gradient',water_gradient,refs) #_compare('watershed:direct_rc',water_direct_rc,refs) #_compare('watershed:gradient_rc',water_gradient_rc,refs) _compare('watershed:direct_mean',water_direct_mean,refs) _compare('watershed:gradient_mean',water_gradient_mean,refs) #_compare('watershed:direct_raw',water_direct_raw,refs) #_compare('watershed:gradient_raw',water_gradient_raw,refs) #_compare('watershed:direct:full',water_direct,refs_full) #_compare('watershed:gradient:full',water_gradient,refs_full) #_compare('watershed:direct_raw:full',water_direct_raw,refs_full) #_compare('watershed:gradient_raw:full',water_gradient_raw,refs_full) #_compare('active_masks',active_masks,refs) _compare('active_masks:filtered',active_masks_filtered,refs) #_compare('active_masks2',active_masks2,refs) #_compare('roysam',roysams,refs) _compare('roysam_mean',roysams_mean,refs) #_compare('roysams_mean_filter',roysams_mean_filtered,refs) _compare('roysams_mean_filter_no_AS',roysams_mean_filtered[5:],refs[5:]) aabid_refs = ic100_ref[:5] + gnf_ref[:5] aabids = [Task(load_aabid,'ic100',i) for i in xrange(5)] +\ [Task(load_aabid,'gnf',i) for i in xrange(5)] compare(aabid_refs,ic100_ref[:5],'AS',aabids) # vim: set ts=4 sts=4 sw=4 expandtab smartindent:
return _process_B(B) def _process_B(B): L,N = ndimage.label(~B) bg = 0 bg_size = (L==bg).sum() for i in xrange(1,N+1): i_size = (L == i).sum() if i_size > bg_size: bg_size = i_size bg = i if i_size < _min_obj_size: L[L==i] = 0 L[L==bg]=0 L,_ = ndimage.label(L!=0) return L def load_aabid(col,id): from readmagick import readimg id = ('../data/images/segmented-ashariff/%s/dna-%s.psd' % (col,id)) I = readimg(id) B = (I[:,:,0] > I[:,:,1]) return _process_B(B) ic100_imgs = load_ic100() gnf_imgs = load_gnf() ic100_ref = [Task(load_ref,'ic100',i) for i in ic100_idxs] gnf_ref = [Task(load_ref,'gnf',i) for i in gnf_idxs]