import os import os.path as op import matplotlib.pyplot as plt import mne import numpy as np from jumeg.connectivity.con_utils import group_con_matrix_by_lobe from jumeg.connectivity.con_viz import plot_grouped_causality_circle from jumeg.jumeg_utils import get_jumeg_path ############################################################################### # Load the grouping files ############################################################################### grouping_yaml_fname = op.join(get_jumeg_path(), 'data', 'desikan_aparc_cortex_based_grouping_ck.yaml') lobe_grouping_yaml_fname = op.join(get_jumeg_path(), 'data', 'lobes_grouping.yaml') ############################################################################### # Load anatomical labels ############################################################################### subjects_dir = os.environ['SUBJECTS_DIR'] full_labels = mne.read_labels_from_annot(subject='fsaverage', parc='aparc', hemi='both', subjects_dir=subjects_dir)
from jumeg.connectivity.causality import (compute_order, do_mvar_evaluation, prepare_causality_matrix) from jumeg.connectivity import (plot_grouped_connectivity_circle, plot_grouped_causality_circle) import scot import scot.connectivity_statistics as scs from scot.connectivity import connectivity import pickle import time t_start = time.time() print('Scot version -', scot.__version__) yaml_fname = get_jumeg_path() + '/examples/aparc_cortex_based_grouping.yaml' labels_fname = get_jumeg_path() + '/examples/label_names.list' data_path = sample.data_path() subjects_dir = data_path + '/subjects' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_raw = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' fname_event = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' # Load data inverse_operator = read_inverse_operator(fname_inv) raw = mne.io.read_raw_fif(fname_raw) events = mne.read_events(fname_event) # Add a bad channel raw.info['bads'] += ['MEG 2443']
from jumeg.connectivity.causality import (compute_order, do_mvar_evaluation, prepare_causality_matrix) from jumeg.connectivity import (plot_grouped_connectivity_circle, plot_grouped_causality_circle) import scot import scot.connectivity_statistics as scs from scot.connectivity import connectivity import yaml import time t_start = time.time() print(('Scot version -', scot.__version__)) yaml_fname = get_jumeg_path( ) + '/data/desikan_aparc_cortex_based_grouping.yaml' labels_fname = get_jumeg_path() + '/data/desikan_label_names.yaml' data_path = sample.data_path() subjects_dir = data_path + '/subjects' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_raw = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' fname_event = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' # Load data inverse_operator = read_inverse_operator(fname_inv) raw = mne.io.read_raw_fif(fname_raw) events = mne.read_events(fname_event) # Add a bad channel raw.info['bads'] += ['MEG 2443']
# config MLICA_threshold = 0.8 n_components = 60 njobs = 4 # for downsampling tmin = 0 tmax = tmin + 15000 flow_ecg, fhigh_ecg = 8, 20 flow_eog, fhigh_eog = 1, 20 ecg_thresh, eog_thresh = 0.3, 0.3 ecg_ch = 'ECG 001' eog1_ch = 'EOG 001' eog2_ch = 'EOG 002' reject = {'mag': 5e-12} refnotch = [50., 100., 150., 200., 250., 300., 350., 400.] data_path = op.join(get_jumeg_path(), 'data') print data_path # example filname raw_fname = "/Volumes/megraid21/sripad/cau_fif_data/jumeg_test_data/" \ "109925_CAU01A_100715_0842_2_c,rfDC-raw.fif" # load the model for artifact rejection # the details of the model is provided in the x_validation_shuffle_v4_split_23.txt model_name = op.join(data_path, "dcnn_model.hdf5") model = load_model(model_name) # noise reducer raw_nr = noise_reducer(raw_fname, reflp=5., return_raw=True)
import os.path as op import numpy as np import mne from mne.datasets import sample from jumeg.jumeg_utils import get_jumeg_path from jumeg.connectivity import make_annot_from_csv from nilearn import plotting from surfer import Brain data_path = sample.data_path() subject = 'sample' subjects_dir = data_path + '/subjects' parc_fname = 'standard_garces_2016' csv_fname = op.join(get_jumeg_path(), 'data', 'standard_rsns.csv') # set make_annot to True to save the annotation to disk labels, coords, _ = make_annot_from_csv(subject, subjects_dir, csv_fname, parc_fname=parc_fname, make_annot=False, return_label_coords=True) # to plot mni coords on glass brain n_nodes = np.array(coords).shape[0] # make a random zero valued connectivity matrix con = np.zeros((n_nodes, n_nodes)) # plot the connectome on a glass brain background plotting.plot_connectome(con, coords) plotting.show() # plot the brain surface, foci and labels
''' import os.path as op import numpy as np import mne from mne.datasets import sample from jumeg.jumeg_utils import get_jumeg_path from jumeg.connectivity import make_annot_from_csv from jumeg.connectivity import plot_grouped_connectivity_circle data_path = sample.data_path() subject = 'sample' subjects_dir = data_path + '/subjects' parc_fname = 'standard_garces_2016' csv_fname = op.join(get_jumeg_path(), 'data', 'standard_rsns.csv') # set make_annot to True to save the annotation to disk labels, coords, foci = make_annot_from_csv(subject, subjects_dir, csv_fname, parc_fname=parc_fname, make_annot=False, return_label_coords=True) aparc = mne.read_labels_from_annot('sample', subjects_dir=subjects_dir) aparc_names = [apa.name for apa in aparc] lh_aparc = [mylab for mylab in aparc if mylab.hemi == 'lh'] rh_aparc = [mylab for mylab in aparc if mylab.hemi == 'rh'] # get the appropriate resting state labels