Пример #1
0
def test_master_background_userbg(_jail, user_background):
    """Verify data can run through the step with a user-supplied background"""

    image = datamodels.ImageModel((10, 10))
    image.meta.instrument.name = 'MIRI'
    image.meta.instrument.detector = 'MIRIMAGE'
    image.meta.exposure.type = 'MIR_LRS-FIXEDSLIT'
    image.meta.observation.date = '2018-01-01'
    image.meta.observation.time = '00:00:00'
    image.meta.subarray.xstart = 1
    image.meta.subarray.ystart = 1
    image.meta.wcsinfo.v2_ref = 0
    image.meta.wcsinfo.v3_ref = 0
    image.meta.wcsinfo.roll_ref = 0
    image.meta.wcsinfo.ra_ref = 0
    image.meta.wcsinfo.dec_ref = 0
    image = AssignWcsStep.call(image)

    # Run with a user-supplied background and verify this is recorded in header
    result = MasterBackgroundStep.call(image, user_background=user_background)

    collect_pipeline_cfgs('./config')
    result = MasterBackgroundStep.call(
        image,
        config_file='config/master_background.cfg',
        user_background=user_background,
    )

    # For inputs that are not files, the following should be true
    assert type(image) is type(result)
    assert result is not image
    assert result.meta.cal_step.master_background == 'COMPLETE'
    assert result.meta.background.master_background_file == 'user_background.fits'
Пример #2
0
def test_master_background_userbg(_jail, user_background):
    """Verify data can run through the step with a user-supplied background"""

    image = datamodels.ImageModel((10, 10))
    image.meta.instrument.name = 'MIRI'
    image.meta.instrument.detector = 'MIRIMAGE'
    image.meta.exposure.type = 'MIR_LRS-FIXEDSLIT'
    image.meta.observation.date = '2018-01-01'
    image.meta.observation.time = '00:00:00'
    image.meta.subarray.xstart = 1
    image.meta.subarray.ystart = 1
    image.meta.wcsinfo.v2_ref = 0
    image.meta.wcsinfo.v3_ref = 0
    image.meta.wcsinfo.roll_ref = 0
    image.meta.wcsinfo.ra_ref = 0
    image.meta.wcsinfo.dec_ref = 0
    image = AssignWcsStep.call(image)

    # Run with a user-supplied background and verify this is recorded in header
    result = MasterBackgroundStep.call(image, user_background=user_background)

    collect_pipeline_cfgs('./config')
    result = MasterBackgroundStep.call(
        image,
        config_file='config/master_background.cfg',
        user_background=user_background,
        )

    # For inputs that are not files, the following should be true
    assert type(image) is type(result)
    assert result is not image
    assert result.meta.cal_step.master_background == 'COMPLETE'
    assert result.meta.background.master_background_file == 'user_background.fits'
Пример #3
0
def run_pipeline(jail, rtdata_module):
    """Run the calwebb_spec2 pipeline on a single NIRSpec MOS exposure."""

    rtdata = rtdata_module

    # Get the cfg files
    collect_pipeline_cfgs("config")

    # Get the MSA metadata file referenced in the input exposure
    rtdata.get_data("nirspec/mos/jw95065006001_0_short_msa.fits")

    # Get the input exposure
    rtdata.get_data(
        "nirspec/mos/f170lp-g235m_mos_observation-6-c0e0_001_dn_nrs1_mod.fits")

    # Run the calwebb_spec2 pipeline; save results from intermediate steps
    args = [
        "config/calwebb_spec2.cfg", rtdata.input,
        "--steps.assign_wcs.save_results=true",
        "--steps.msa_flagging.save_results=true",
        "--steps.extract_2d.save_results=true",
        "--steps.flat_field.save_results=true",
        "--steps.srctype.save_results=true",
        "--steps.pathloss.save_results=true",
        "--steps.barshadow.save_results=true"
    ]
    Step.from_cmdline(args)

    return rtdata
Пример #4
0
    def test_image3_pipeline2(self):
        """Regression test definitions for CALIMAGE3 pipeline.

        Regression test of calwebb_image3 pipeline on NIRCam
        simulated long-wave data with a 6-point dither.
        """
        asn_file = self.get_data(self.test_dir,
                                 "jw10002-o001_20171116t191235_image3_002_asn.json")
        for file in raw_from_asn(asn_file):
            self.get_data(self.test_dir, file)

        collect_pipeline_cfgs('config')

        args = [
            'config/calwebb_image3.cfg',
            asn_file,
            '--steps.tweakreg.kernel_fwhm=2',
            '--steps.tweakreg.snr_threshold=5',
            '--steps.tweakreg.enforce_user_order=True',
            '--steps.tweakreg.searchrad=10',
            '--steps.tweakreg.fitgeometry=rscale'
        ]

        Step.from_cmdline(args)

        outputs = [('jw10002001001_01101_00004_nrcblong_o001_crf.fits',
                    'jw10002001001_01101_00004_nrcblong_o001_crf_ref.fits'),
                   {'files':('jw10002-o001_t002_nircam_f444w_i2d.fits',
                    'jw10002-o001_t002_nircam_f444w_i2d_ref.fits'),
                    'pars':{'ignore_keywords':self.ignore_keywords+['NAXIS1','TFORM*'],
                            'ignore_fields':self.ignore_keywords,
                            'rtol':0.0001}
                   }
                  ]
        self.compare_outputs(outputs)
Пример #5
0
    def test_run_msaflagging(self, caplog):
        """Test msa flagging operation"""

        # Retrieve the data.
        collect_pipeline_cfgs('cfgs')
        self.get_data(*self.test_dir, 'jw95065006001_0_msa_twoslit.fits')
        asn_path = self.get_data(*self.test_dir,
                                 'mos_udf_g235m_twoslit_spec2_asn.json')
        with open(asn_path) as fp:
            asn = load_asn(fp)
        for product in asn['products']:
            for member in product['members']:
                self.get_data(*self.test_dir, 'level2a_twoslit',
                              member['expname'])

        # Run step.
        args = [
            op.join('cfgs', 'calwebb_spec2.cfg'), asn_path,
            '--steps.msa_flagging.skip=false'
        ]
        Step.from_cmdline(args)

        # Test.
        assert 'Step msa_flagging running with args' in caplog.text
        assert 'Step msa_flagging done' in caplog.text

        for product in asn['products']:
            prod_name = product['name'] + '_cal.fits'
            assert op.isfile(prod_name)
Пример #6
0
    def test_nirspec_masterbg_nodded(self):
        """Run masterbackground step on NIRSpec association"""
        asn_file = self.get_data(*self.test_dir, 'nirspec_spec3_asn.json')
        for file in raw_from_asn(asn_file):
            self.get_data(*self.test_dir, file)

        collect_pipeline_cfgs('./config')
        result = MasterBackgroundStep.call(
            asn_file,
            config_file='config/master_background.cfg',
            save_background=True,
            save_results=True)

        # test 1
        # compare  background subtracted data  to truth files
        # check that the  cal_step master_background ran to complete
        outputs = []
        for model in result:
            assert model.meta.cal_step.master_background == 'COMPLETE'

            result_file = model.meta.filename.replace('cal',
                                                      'master_background')
            truth_file = self.get_data(*self.ref_loc, result_file)

            outputs.append((result_file, truth_file))
        self.compare_outputs(outputs)

        # test 2
        # compare the master background combined file to truth file
        master_combined_bkg_file = 'ifu_prism_source_off_fix_NRS1_o001_masterbg.fits'
        truth_background = self.get_data(*self.ref_loc,
                                         master_combined_bkg_file)
        outputs = [(master_combined_bkg_file, truth_background)]
        self.compare_outputs(outputs)
Пример #7
0
    def test_wfs_image2(self):
        """
        Regression test of the WFS&C `calwebb_wfs-image2.cfg` pipeline
        """
        data_base = 'jw82600026001_02101_00001_nrca1_rate'
        ext = '.fits'
        input_name = '{}{}'.format(data_base, ext)
        input_file = self.get_data(self.test_dir, 'sdp_jw82600_wfs', 'level2a',
                                   input_name)

        collect_pipeline_cfgs('cfgs')
        Step.from_cmdline([os.path.join('cfgs', 'calwebb_wfs-image2.cfg'), input_file])

        cal_name = input_name.replace('rate', 'cal')
        output_name = input_name.replace('rate','cal_ref')
        outputs = [(cal_name, output_name)]
        self.compare_outputs(outputs)

        output_files = glob.glob('*')
        output_files.remove('cfgs')

        # these would happen when docopy=True
        if input_name in output_files:
            output_files.remove(input_name)
        if output_name in output_files:
            output_files.remove(output_name)

        assert cal_name in output_files
        output_files.remove(cal_name)
        assert not output_files, 'Unexpected output files {}'.format(output_files)
Пример #8
0
    def test_mirilrs2pipeline1(self):
        """
        Regression test of calwebb_spec2 pipeline performed on
        MIRI LRS slitless data.
        """
        input_file = self.get_data(
            'test_spec2pipeline',
            'jw80600012001_02101_00003_mirimage_rateints.fits')

        collect_pipeline_cfgs()
        args = [
            'calwebb_tso-spec2.cfg',
            input_file,
        ]
        Step.from_cmdline(args)

        outputs = [('jw80600012001_02101_00003_mirimage_calints.fits',
                    'jw80600012001_02101_00003_mirimage_calints_ref.fits',
                    ['primary', 'sci', 'err', 'dq', 'relsens']),
                   ('jw80600012001_02101_00003_mirimage_x1dints.fits',
                    'jw80600012001_02101_00003_mirimage_x1dints_ref.fits', [
                        'primary', ('extract1d', 1), ('extract1d', 2),
                        ('extract1d', 3), ('extract1d', 4)
                    ])]
        self.compare_outputs(outputs)
Пример #9
0
def test_master_background_logic(_jail, user_background, science_image):
    """Verify if calspec 2 background step was run the master background step will be skipped"""

    # the background step in calspec2 was done
    science_image.meta.cal_step.back_sub = 'COMPLETE'

    # Run with a user-supplied background
    collect_pipeline_cfgs('./config')
    result = MasterBackgroundStep.call(
        science_image,
        config_file='config/master_background.cfg',
        user_background=user_background,
    )

    assert result.meta.cal_step.master_background == 'SKIPPED'
    assert type(science_image) is type(result)

    # Now force it
    result = MasterBackgroundStep.call(
        science_image,
        config_file='config/master_background.cfg',
        user_background=user_background,
        force_subtract=True)

    assert result.meta.cal_step.master_background == 'COMPLETE'
    assert type(science_image) is type(result)
Пример #10
0
def run_pipeline(jail, rtdata_module, request):
    """Run the calwebb_spec2 pipeline on NIRSpec Fixed-Slit exposures.
       We currently test the following types of inputs:
         1) Full-frame exposure (all slits will be extracted)
         2) ALLSLITS subarray exposure (all slits will be extracted)
         3) S400A1 subarray exposure (1 slit extracted)"""

    rtdata = rtdata_module

    # Get the cfg files
    collect_pipeline_cfgs("config")

    # Get the input exposure
    rtdata.get_data('nirspec/fs/' + request.param + 'rate.fits')

    # Run the calwebb_spec2 pipeline; save results from intermediate steps
    args = [
        "config/calwebb_spec2.cfg", rtdata.input,
        "--steps.assign_wcs.save_results=true",
        "--steps.extract_2d.save_results=true",
        "--steps.wavecorr.save_results=true",
        "--steps.srctype.save_results=true",
        "--steps.flat_field.save_results=true",
        "--steps.pathloss.save_results=true"
    ]
    Step.from_cmdline(args)

    return rtdata
Пример #11
0
    def test_image3_pipeline1(self):

        asn_name = "mosaic_long_asn.json"
        asn_file = self.get_data('test_calimage3', asn_name)
        for file in raw_from_asn(asn_file):
            self.get_data('test_calimage3', file)

        collect_pipeline_cfgs('config')

        args = [
            'config/calwebb_image3.cfg',
            asn_file,
            '--steps.tweakreg.skip=True',
        ]

        Step.from_cmdline(args)

        outputs = [
            (  # Compare level-2c crf product
                'nrca5_47Tuc_subpix_dither1_newpos_a3001_crf.fits',
                'nrca5_47Tuc_subpix_dither1_newpos_cal-a3001_ref.fits'),
            {
                'files': (  # Compare i2d product
                    'mosaic_long_i2d.fits', 'mosaic_long_i2d_ref.fits'),
                'pars': {
                    'ignore_keywords':
                    self.ignore_keywords + ['NAXIS1', 'TFORM*'],
                    'ignore_fields': self.ignore_keywords,
                    'rtol': 0.0001
                }
            }
        ]
        self.compare_outputs(outputs)
Пример #12
0
def run_pipelines(jail, rtdata_module):
    """Run stage 2-3 pipelines on NIRISS SOSS data."""
    rtdata = rtdata_module
    collect_pipeline_cfgs("config")

    # Run tso-spec2 pipeline on the first _rateints file, saving intermediate products
    rtdata.get_data(
        "niriss/soss/jw00625023001_03101_00001-seg001_nis_rateints.fits")
    args = [
        "config/calwebb_tso-spec2.cfg",
        rtdata.input,
        "--steps.flat_field.save_results=True",
        "--steps.srctype.save_results=True",
    ]
    Step.from_cmdline(args)

    # Run tso-spec2 pipeline on the second _rateints file, without saving or
    # checking any results (simply create a fresh input for level-3 test)
    rtdata.get_data(
        "niriss/soss/jw00625023001_03101_00001-seg002_nis_rateints.fits")
    args = ["config/calwebb_tso-spec2.cfg", rtdata.input]
    Step.from_cmdline(args)

    # Get the level3 assocation json file (though not its members) and run
    # the tso3 pipeline on all _calints files listed in association
    rtdata.get_data(
        "niriss/soss/jw00625-o023_20191210t204036_tso3_001_asn.json")
    args = ["config/calwebb_tso3.cfg", rtdata.input]
    Step.from_cmdline(args)

    return rtdata
Пример #13
0
    def test_image3_pipeline1(self):

        asn_name = "mosaic_long_asn.json"
        asn_file = self.get_data('test_calimage3', asn_name)
        for file in raw_from_asn(asn_file):
            self.get_data('test_calimage3', file)

        collect_pipeline_cfgs('config')

        args = [
            'config/calwebb_image3.cfg',
            asn_file,
            '--steps.tweakreg.skip=True',
        ]

        Step.from_cmdline(args)

        self.ignore_keywords += ['NAXIS1', 'TFORM*']
        self.ignore_fields = self.ignore_keywords
        self.rtol = 0.0001

        outputs = [('nrca5_47Tuc_subpix_dither1_newpos_a3001_crf.fits',
                    'nrca5_47Tuc_subpix_dither1_newpos_cal-a3001_ref.fits'),
                   ('mosaic_long_i2d.fits',
                    'mosaic_long_i2d_ref.fits'),
                   ('mosaic_long_cat.ecsv',
                    'mosaic_long_cat_ref.ecsv'),
                  ]
        self.compare_outputs(outputs)
Пример #14
0
    def test_miri_masterbg_lrs_dedicated(self):
        """Run masterbackground step on MIRI LRS association"""
        asn_file = self.get_data(*self.test_dir,
                                 'miri_lrs_mbkg_dedicated_spec3_asn.json')
        for file in raw_from_asn(asn_file):
            self.get_data(*self.test_dir, file)

        collect_pipeline_cfgs('./config')
        result = MasterBackgroundStep.call(
            asn_file,
            config_file='config/master_background.cfg',
            save_background=True,
            save_results=True)

        # test 1
        # loop over the background subtracted data and compare to truth files
        for model in result:
            assert model.meta.cal_step.master_background == 'COMPLETE'

            result_file = model.meta.filename.replace('cal',
                                                      'master_background')
            truth_file = self.get_data(*self.ref_loc, result_file)

            outputs = [(result_file, truth_file)]
            self.compare_outputs(outputs)

        # test 2
        # compare the master background combined file to truth file
        master_combined_bkg_file = 'MIRI_LRS_seq1_MIRIMAGE_P750Lexp1_o001_masterbg.fits'
        truth_background = self.get_data(*self.ref_loc,
                                         master_combined_bkg_file)
        outputs = [(master_combined_bkg_file, truth_background)]
        self.compare_outputs(outputs)
Пример #15
0
def run_pipelines(jail, rtdata_module):
    """Run stage 2-3 tso pipelines on NIRCAM TSO grism data."""
    rtdata = rtdata_module
    collect_pipeline_cfgs("config")

    # Run tso-spec2 pipeline on the _rateints file, saving intermediate products
    rtdata.get_data(
        "nircam/tsgrism/jw00721012001_03103_00001-seg001_nrcalong_rateints.fits"
    )
    args = [
        "config/calwebb_tso-spec2.cfg",
        rtdata.input,
        "--steps.flat_field.save_results=True",
        "--steps.extract_2d.save_results=True",
        "--steps.srctype.save_results=True",
    ]
    Step.from_cmdline(args)

    # Get the level3 assocation json file (though not its members) and run
    # the tso3 pipeline on all _calints files listed in association
    rtdata.get_data(
        "nircam/tsgrism/jw00721-o012_20191119t043909_tso3_001_asn.json")
    args = ["config/calwebb_tso3.cfg", rtdata.input]
    Step.from_cmdline(args)

    return rtdata
Пример #16
0
def run_spec3(jail, rtdata_module):
    """Run the Spec3Pipeline on the single cal result from the Spec2Pipeline run"""
    rtdata = rtdata_module

    collect_pipeline_cfgs("config")

    # Note that we use the truth file from spec2 processing as the input to spec3
    rtdata.get_data(TRUTH_PATH + '/' + 'ifushort_ch12_cal.fits')

    asn = asn_from_list([rtdata.input], product_name='ifushort_ch12_spec3')
    asn.data["program"] = "00024"
    asn.data["asn_type"] = "spec3"
    asn.sequence = 1
    asn_name, serialized = asn.dump(format="json")
    with open(asn_name, "w") as f:
        f.write(serialized)

    rtdata.input = asn_name

    args = [
        "config/calwebb_spec3.cfg",
        rtdata.input,
        '--steps.master_background.save_results=true',
        '--steps.mrs_imatch.save_results=true',
        '--steps.outlier_detection.save_results=true',
        '--steps.resample_spec.save_results=true',
        '--steps.cube_build.save_results=true',
        '--steps.extract_1d.save_results=true',
        '--steps.combine_1d.save_results=true',
    ]

    Step.from_cmdline(args)
    return rtdata
def test_nirspec_ifu_mbkg_user(rtdata, fitsdiff_default_kwargs):
    """Test NIRSpec IFU data with a user-supplied background file."""
    # Get user-supplied background
    user_background = "prism_bkg_x1d.fits"
    rtdata.get_data(f"nirspec/ifu/{user_background}")

    # Get input data
    rtdata.get_data("nirspec/ifu/prism_sci_bkg_cal.fits")

    collect_pipeline_cfgs("config")
    args = [
        "config/master_background.cfg", rtdata.input, "--user_background",
        user_background
    ]
    Step.from_cmdline(args)

    output = "prism_sci_bkg_master_background.fits"
    rtdata.output = output

    # Get the truth file
    rtdata.get_truth(f"truth/test_nirspec_ifu_mbkg_user/{output}")

    # Compare the results
    diff = FITSDiff(rtdata.output, rtdata.truth, **fitsdiff_default_kwargs)
    assert diff.identical, diff.report()
Пример #18
0
def test_master_background_init(input_data, status, _jail, user_background):
    """Verify data can run through the step"""

    result = MasterBackgroundStep.call(input_data)

    collect_pipeline_cfgs('./config')
    result = MasterBackgroundStep.call(
        input_data, config_file='config/master_background.cfg')

    # For inputs that are not files, the following should be true
    assert type(input_data) is type(result)
    assert result is not input_data

    if isinstance(result, datamodels.ModelContainer):
        for model in result:
            assert model.meta.cal_step.master_background == status
    else:
        assert result.meta.cal_step.master_background == status

    # Run with a user-supplied background and verify this is recorded in header
    result = MasterBackgroundStep.call(input_data,
                                       user_background=user_background)

    if isinstance(result, datamodels.ModelContainer):
        for model in result:
            if model.meta.cal_step.master_background == 'COMPLETE':
                assert model.meta.background.master_background_file == 'user_background.fits'
    else:
        if result.meta.cal_step.master_background == 'COMPLETE':
            assert result.meta.background.master_background_file == 'user_background.fits'

    # Make sure saving the computed background works
    result = MasterBackgroundStep.call(input_data, save_background=True)
Пример #19
0
    def test_nrs_fs_spec3(self):
        """
        Regression test of calwebb_spec3 pipeline performed on
        NIRSpec fixed-slit data.
        """
        cfg_dir = './cfgs'
        collect_pipeline_cfgs(cfg_dir)
        datapath = ['test_datasets', 'fss', '93045', 'level2b']
        asn_file = self.get_data(
            *datapath, 'jw93045-o010_20180725t035735_spec3_001_asn.json')

        for file in raw_from_asn(asn_file):
            self.get_data(*datapath, file)

        args = [path.join(cfg_dir, 'calwebb_spec3.cfg'), asn_file]

        Step.from_cmdline(args)

        # Compare results
        outputs = [('jw00023001001_01101_00001_NRS1_cal.fits',
                    'jw00023001001_01101_00001_NRS1_cal_ref.fits'),
                   ('jw00023001001_01101_00001_NRS1_s2d.fits',
                    'jw00023001001_01101_00001_NRS1_s2d_ref.fits'),
                   ('jw00023001001_01101_00001_NRS1_x1d.fits',
                    'jw00023001001_01101_00001_NRS1_x1d_ref.fits')]
        self.compare_outputs(outputs)
Пример #20
0
def test_nirspec_gwa(_jail, background, science_image):
    """Verify NIRSPEC GWA logic for in the science and background"""

    # open the background to read in the GWA values
    back_image = datamodels.open(background)
    science_image.meta.instrument.gwa_xtilt = back_image.meta.instrument.gwa_xtilt
    science_image.meta.instrument.gwa_ytilt = back_image.meta.instrument.gwa_ytilt
    science_image.meta.instrument.gwa_tilt = back_image.meta.instrument.gwa_tilt

    bkg = [background]
    # Test Run with GWA values the same - confirm it runs
    # And gives the predicted result

    collect_pipeline_cfgs('./config')
    result = BackgroundStep.call(
        science_image,
        bkg,
        config_file='config/background.cfg',
    )

    test = science_image.data - back_image.data
    assert_allclose(result.data, test)
    assert type(result) is type(science_image)
    assert result.meta.cal_step.back_sub == 'COMPLETE'
    back_image.close()
Пример #21
0
    def test_miri_masterbg_mrs_nodded(self):
        """Run masterbackground step on MIRI MRS association"""
        asn_file = self.get_data(*self.test_dir,
                                 'miri_mrs_mbkg_spec3_asn.json')
        for file in raw_from_asn(asn_file):
            self.get_data(*self.test_dir, file)

        collect_pipeline_cfgs('./config')
        result = MasterBackgroundStep.call(
            asn_file,
            config_file='config/master_background.cfg',
            save_background=True,
            save_results=True,
        )

        # test 1
        # loop over the background subtracted data and compare to truth files
        # check that the  cal_step master_background ran to complete
        for model in result:
            assert model.meta.cal_step.master_background == 'COMPLETE'
            truth_file = self.get_data(*self.ref_loc, model.meta.filename)
            outputs = [(model.meta.filename, truth_file)]
            self.compare_outputs(outputs)

        # test 2
        # compare the master background combined file to truth file
        master_combined_bkg_file = 'MIRI_MRS_nod_seq1_MIRIFUSHORT_12SHORTexp1_o001_masterbg.fits'
        truth_background = self.get_data(*self.ref_loc,
                                         master_combined_bkg_file)
        outputs = [(master_combined_bkg_file, truth_background)]
        self.compare_outputs(outputs)
Пример #22
0
    def test_image3_pipeline1(self):

        asn_name = "mosaic_long_asn.json"
        asn_file = self.get_data('test_calimage3', asn_name)
        for file in raw_from_asn(asn_file):
            self.get_data('test_calimage3', file)

        collect_pipeline_cfgs('config')

        args = [
            'config/calwebb_image3.cfg',
            asn_file,
            '--steps.tweakreg.skip=True',
        ]

        Step.from_cmdline(args)

        outputs = [(# Compare level-2c crf product
                             'nrca5_47Tuc_subpix_dither1_newpos_a3001_crf.fits',
                             'nrca5_47Tuc_subpix_dither1_newpos_cal-a3001_ref.fits'),
                   {'files':(# Compare i2d product
                             'mosaic_long_i2d.fits',
                             'mosaic_long_i2d_ref.fits'),
                    'pars': {'ignore_keywords':
                             self.ignore_keywords+['NAXIS1', 'TFORM*'],
                             'ignore_fields':self.ignore_keywords,
                             'rtol': 0.0001}
                   },
                   ('mosaic_long_cat.ecsv', 'mosaic_long_cat_ref.ecsv'),
                  ]
        self.compare_outputs(outputs)
Пример #23
0
    def test_run_msaflagging(self, caplog):
        """Test msa flagging operation"""

        # Retrieve the data.
        collect_pipeline_cfgs('cfgs')
        self.get_data(
            *self.test_dir, 'jw95065006001_0_msa_twoslit.fits'
        )
        asn_path = self.get_data(
            *self.test_dir, 'mos_udf_g235m_twoslit_spec2_asn.json'
        )
        with open(asn_path) as fp:
            asn = load_asn(fp)
        for product in asn['products']:
            for member in product['members']:
                self.get_data(
                    *self.test_dir, 'level2a_twoslit', member['expname']
                )

        # Run step.
        args = [
            op.join('cfgs', 'calwebb_spec2.cfg'),
            asn_path,
            '--steps.msa_flagging.skip=false'
        ]
        Step.from_cmdline(args)

        # Test.
        assert 'Step msa_flagging running with args' in caplog.text
        assert 'Step msa_flagging done' in caplog.text

        for product in asn['products']:
            prod_name = product['name'] + '_cal.fits'
            assert op.isfile(prod_name)
Пример #24
0
def test_call_straylight1(_jail, miri_mrs):
    """ test possible user options are set up correctly """

    collect_pipeline_cfgs('./config')

    # Test the ModShepard power is in the correct range
    # set the power to outside the upper range
    step = StraylightStep.from_config_file('config/straylight.cfg')
    step.override_straylight = 'dummy.asdf'
    step.method = 'ModShepard'
    step.power = 6
    result = step.run(miri_mrs)
    assert result.meta.cal_step.straylight == 'SKIPPED'

    # set the power to outside the lower range
    step.power = 0.01
    result = step.run(miri_mrs)
    assert result.meta.cal_step.straylight == 'SKIPPED'

    # Test that roi is in the correct range
    step.power = 2  # reasonable value
    step.roi = 1
    result = step.run(miri_mrs)
    assert result.meta.cal_step.straylight == 'SKIPPED'

    step.power = 2  # reasonable value
    step.roi = 1500
    result = step.run(miri_mrs)
    assert result.meta.cal_step.straylight == 'SKIPPED'
Пример #25
0
def run_pipelines(jail, rtdata_module):
    """Run stage 2 and 3 pipelines on NIRCam TSIMG data."""

    rtdata = rtdata_module

    collect_pipeline_cfgs("config")

    # Run the calwebb_tso-image2 pipeline on each of the 2 inputs
    rate_files = [
        "nircam/tsimg/jw00312006001_02102_00001-seg001_nrcb1_rateints.fits",
        "nircam/tsimg/jw00312006001_02102_00001-seg002_nrcb1_rateints.fits"
    ]
    for rate_file in rate_files:
        rtdata.get_data(rate_file)
        args = ["config/calwebb_tso-image2.cfg", rtdata.input]
        Step.from_cmdline(args)

    # Get the level3 assocation json file (though not its members) and run
    # the tso3 pipeline on all _calints files listed in association
    rtdata.get_data(
        "nircam/tsimg/jw00312-o006_20191225t115310_tso3_001_asn.json")
    args = ["config/calwebb_tso3.cfg", rtdata.input]
    Step.from_cmdline(args)

    return rtdata
Пример #26
0
    def test_miri_masterbg_lrs_dedicated(self):
        """Run masterbackground step on MIRI LRS association"""
        asn_file = self.get_data(*self.test_dir,
                                  'miri_lrs_mbkg_dedicated_spec3_asn.json')
        for file in raw_from_asn(asn_file):
            self.get_data(*self.test_dir, file)

        collect_pipeline_cfgs('./config')
        result = MasterBackgroundStep.call(
            asn_file,
            config_file='config/master_background.cfg',
            save_background = True,
            save_results = True)

        # test 1
        # loop over the background subtracted data and compare to truth files
        for model in result:
            assert model.meta.cal_step.master_background == 'COMPLETE'

            result_file = model.meta.filename.replace('cal', 'master_background')
            truth_file = self.get_data(*self.ref_loc,
                                        result_file)

            outputs = [(result_file, truth_file)]
            self.compare_outputs(outputs)

        # test 2
        # compare the master background combined file to truth file
        master_combined_bkg_file = 'MIRI_LRS_seq1_MIRIMAGE_P750Lexp1_o001_masterbg.fits'
        truth_background = self.get_data(*self.ref_loc,
                                          master_combined_bkg_file)
        outputs = [(master_combined_bkg_file, truth_background)]
        self.compare_outputs(outputs)
Пример #27
0
    def test_nrs_fs_spec3(self):
        """
        Regression test of calwebb_spec3 pipeline performed on
        NIRSpec fixed-slit data.
        """
        cfg_dir = './cfgs'
        collect_pipeline_cfgs(cfg_dir)
        datapath = ['test_datasets', 'fss', '93045', 'level2b']
        asn_file = self.get_data(*datapath,
                                 'jw93045-o010_20180725t035735_spec3_001_asn.json')

        for file in raw_from_asn(asn_file):
            self.get_data(*datapath, file)

        args = [
            path.join(cfg_dir, 'calwebb_spec3.cfg'),
            asn_file
        ]

        Step.from_cmdline(args)

        # Compare results
        outputs = [('jw00023001001_01101_00001_NRS1_cal.fits',
                    'jw00023001001_01101_00001_NRS1_cal_ref.fits'),
                   ('jw00023001001_01101_00001_NRS1_s2d.fits',
                    'jw00023001001_01101_00001_NRS1_s2d_ref.fits'),
                   ('jw00023001001_01101_00001_NRS1_x1d.fits',
                    'jw00023001001_01101_00001_NRS1_x1d_ref.fits')
                  ]
        self.compare_outputs(outputs)
Пример #28
0
def run_pipeline(jail, rtdata_module):
    """Run the calwebb_spec2 pipeline on an ASN of nodded MIRI LRS
       fixedslit exposures."""

    rtdata = rtdata_module

    # Get the cfg files
    collect_pipeline_cfgs("config")

    # Get the spec2 ASN and its members
    rtdata.get_asn("miri/lrs/jw00623-o032_20191210t195246_spec2_001_asn.json")

    # Run the calwebb_spec2 pipeline; save results from intermediate steps
    # NOTE: THE RESAMPLE_SPEC STEP IS SKIPPED FOR NOW, BECAUSE IT HAS A BUG
    # (the s2d image is all zeros)
    args = [
        "config/calwebb_spec2.cfg",
        rtdata.input,
        "--steps.resample_spec.skip=true",  # remove when bug fixed
        "--save_bsub=true",
        "--steps.assign_wcs.save_results=true",
        "--steps.flat_field.save_results=true",
        "--steps.srctype.save_results=true"
    ]
    Step.from_cmdline(args)

    return rtdata
Пример #29
0
def run_image3_closedfile(rtdata, jail):
    """Run calwebb_image3 on NIRCam imaging with data that had a closed file issue."""
    rtdata.get_asn("nircam/image/fail_short_image3_asn.json")

    collect_pipeline_cfgs("config")

    args = ["config/calwebb_image3.cfg", rtdata.input]
    Step.from_cmdline(args)
Пример #30
0
def run_pipeline(jail, rtdata_module):
    """Run calwebb_image2 pipeline on MIRI imaging data."""
    rtdata = rtdata_module
    rtdata.get_data("miri/image/jw00001001001_01101_00001_mirimage_rate.fits")

    collect_pipeline_cfgs("config")
    args = ["config/calwebb_image2.cfg", rtdata.input]
    Step.from_cmdline(args)

    return rtdata
Пример #31
0
def test_call_straylight2(_jail, miri_mrs_long):
    """ test step is skipped for MRS IFULONG data """

    collect_pipeline_cfgs('./config')
    # Test the ModShepard power is in the correct range
    step = StraylightStep.from_config_file('config/straylight.cfg')
    step.override_straylight = 'dummy.asdf'
    step.method = 'ModShepard'
    result = step.run(miri_mrs_long)
    assert result.meta.cal_step.straylight == 'SKIPPED'
Пример #32
0
def run_pipeline(jail, rtdata_module):
    """Run calwebb_spec3 on NIRSpec MOS data."""
    rtdata = rtdata_module
    rtdata.get_asn("nirspec/mos/jw00626-o030_20191210t193826_spec3_001_asn.json")

    # Run the calwebb_spec3 pipeline on the association
    collect_pipeline_cfgs("config")
    args = ["config/calwebb_spec3.cfg", rtdata.input]
    Step.from_cmdline(args)

    return rtdata
Пример #33
0
def test_nrs_fs_spec3(_bigdata):
    """
    Regression test of calwebb_spec3 pipeline performed on
    NIRSpec fixed-slit data.
    """
    cfg_dir = './cfgs'
    collect_pipeline_cfgs(cfg_dir)
    datapath = path.join(_bigdata, 'nirspec', 'test_datasets', 'fss', '93045',
                         'level2b')
    args = [
        path.join(cfg_dir, 'calwebb_spec3.cfg'),
        path.join(datapath, 'jw93045-o010_20180725t035735_spec3_001_asn.json')
    ]

    Step.from_cmdline(args)

    # Compare results
    assert False

    ignore_keywords = ['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX']

    na = 'jw00023001001_01101_00001_NRS1_cal.fits'
    nb = _bigdata + '/pipelines/jw00023001001_01101_00001_NRS1_cal_ref.fits'
    h = pf.open(na)
    href = pf.open(nb)
    result = pf.diff.FITSDiff(h,
                              href,
                              ignore_hdus=['ASDF'],
                              ignore_keywords=ignore_keywords,
                              rtol=0.00001)
    assert result.identical, result.report()

    na = 'jw00023001001_01101_00001_NRS1_s2d.fits'
    nb = _bigdata + '/pipelines/jw00023001001_01101_00001_NRS1_s2d_ref.fits'
    h = pf.open(na)
    href = pf.open(nb)
    result = pf.diff.FITSDiff(h,
                              href,
                              ignore_hdus=['ASDF'],
                              ignore_keywords=ignore_keywords,
                              rtol=0.00001)
    assert result.identical, result.report()

    na = 'jw00023001001_01101_00001_NRS1_x1d.fits'
    nb = _bigdata + '/pipelines/jw00023001001_01101_00001_NRS1_x1d_ref.fits'
    h = pf.open(na)
    href = pf.open(nb)
    result = pf.diff.FITSDiff(h,
                              href,
                              ignore_hdus=['ASDF'],
                              ignore_keywords=ignore_keywords,
                              rtol=0.00001)
    assert result.identical, result.report()
Пример #34
0
def test_nirspec_image2(_jail, rtdata, fitsdiff_default_kwargs):
    rtdata.get_data("nirspec/imaging/jw84600010001_02102_00001_nrs2_rate.fits")

    collect_pipeline_cfgs("config")
    args = ["config/calwebb_image2.cfg", rtdata.input]
    Step.from_cmdline(args)
    rtdata.output = "jw84600010001_02102_00001_nrs2_cal.fits"

    rtdata.get_truth("truth/test_nirspec_image2/jw84600010001_02102_00001_nrs2_cal.fits")

    diff = FITSDiff(rtdata.output, rtdata.truth, **fitsdiff_default_kwargs)
    assert diff.identical, diff.report()
Пример #35
0
def test_nircam_image_moving_target(rtdata, fitsdiff_default_kwargs):
    """Test resampled i2d of moving target exposures for NIRCam imaging"""
    collect_pipeline_cfgs("config")
    rtdata.get_asn("nircam/image/mt_asn.json")
    rtdata.output = "mt_assoc_i2d.fits"
    args = ["config/calwebb_image3.cfg", rtdata.input]
    Step.from_cmdline(args)
    rtdata.get_truth("truth/test_nircam_mtimage/mt_assoc_i2d.fits")

    fitsdiff_default_kwargs["atol"] = 1e-5
    diff = FITSDiff(rtdata.output, rtdata.truth, **fitsdiff_default_kwargs)
    assert diff.identical, diff.report()
Пример #36
0
def test_fgs_toobig(rtdata, fitsdiff_default_kwargs, caplog, monkeypatch):
    """Test for the situation where the combined mosaic is too large"""

    # Set the environment to not allow the resultant too-large image.
    monkeypatch.setenv('DMODEL_ALLOWED_MEMORY', "0.9")

    rtdata.get_asn('fgs/image3/image3_asn.json')

    collect_pipeline_cfgs('config')
    args = ['config/calwebb_image3.cfg', rtdata.input]
    with pytest.raises(OutputTooLargeError):
        Step.from_cmdline(args)
Пример #37
0
    def test_msa_missing_nofail(self, caplog):
        """Test MSA missing failure"""
        input_file = self.get_data(
            *self.test_dir, 'level2a_twoslit', 'F170LP-G235M_MOS_observation-6-c0e0_001_DN_NRS1_mod.fits'
        )

        collect_pipeline_cfgs('cfgs')
        args = [
            op.join('cfgs', 'calwebb_spec2.cfg'),
            input_file,
            '--fail_on_exception=false'
        ]

        Step.from_cmdline(args)

        assert 'Unable to open MSA FITS file (MSAMETFL)' in caplog.text
Пример #38
0
    def test_msa_missing_skip(self, caplog):
        """Test MSA missing failure"""
        input_file = self.get_data(
            *self.test_dir, 'level2a_twoslit', 'F170LP-G235M_MOS_observation-6-c0e0_001_DN_NRS1_mod.fits'
        )

        collect_pipeline_cfgs('cfgs')
        args = [
            op.join('cfgs', 'calwebb_spec2.cfg'),
            input_file,
            '--steps.assign_wcs.skip=true'
        ]

        Step.from_cmdline(args)

        assert 'Aborting remaining processing for this exposure.' in caplog.text
Пример #39
0
    def test_image2pipeline1(self):
        """
        Regression test of calwebb_image2 pipeline performed on MIRI data.
        """
        input_file = self.get_data('test_image2pipeline',
                                   'jw00001001001_01101_00001_mirimage_rate.fits')
        collect_pipeline_cfgs('cfgs')
        Image2Pipeline.call(input_file,
                            config_file='cfgs/calwebb_image2.cfg'
                           )

        outputs = [('jw00001001001_01101_00001_mirimage_cal.fits',
                    'jw00001001001_01101_00001_mirimage_cal_ref.fits',
                    ['primary','sci','err','dq','area']),
                    ('jw00001001001_01101_00001_mirimage_i2d.fits',
                    'jw00001001001_01101_00001_mirimage_i2d_ref.fits',
                    ['primary','sci','wht','con'])
                  ]
        self.compare_outputs(outputs)
Пример #40
0
    def test_nrs_fs_brightobj_spec2(self):
        """
        Regression test of calwebb_spec2 pipeline performed on NIRSpec
        fixed-slit data that uses the NRS_BRIGHTOBJ mode (S1600A1 slit).
        """
        input_file = self.get_data(self.test_dir,
                                   'jw84600042001_02101_00001_nrs2_rateints.fits')
        collect_pipeline_cfgs()
        args = [
            'calwebb_tso-spec2.cfg',
            input_file
        ]
        Step.from_cmdline(args)

        outputs = [('jw84600042001_02101_00001_nrs2_calints.fits',
                    'jw84600042001_02101_00001_nrs2_calints_ref.fits'),
                   ('jw84600042001_02101_00001_nrs2_x1dints.fits',
                    'jw84600042001_02101_00001_nrs2_x1dints_ref.fits')
                  ]
        self.compare_outputs(outputs)
Пример #41
0
    def test_image2pipeline2_cal(self):
        """
        Regression test of calwebb_image2 pipeline performed on NIRCam data.
        """
        input_file = self.get_data('test_image2pipeline',
                                   'jw82500001003_02101_00001_NRCALONG_rate.fits')
        output_file = 'jw82500001003_02101_00001_NRCALONG_cal.fits'

        collect_pipeline_cfgs('cfgs')
        Image2Pipeline.call(input_file,
                            config_file='cfgs/calwebb_image2.cfg',
                            output_file=output_file)

        outputs = [(output_file,
                    'jw82500001003_02101_00001_NRCALONG_cal_ref.fits',
                    ['primary','sci','err','dq','area']),
                   ('jw82500001003_02101_00001_NRCALONG_i2d.fits',
                    'jw82500001003_02101_00001_NRCALONG_i2d_ref.fits',
                    ['primary','sci','con','wht'])
                   ]
        self.compare_outputs(outputs)
Пример #42
0
    def test_nirisssoss2pipeline1(self):
        """
        Regression test of calwebb_tso_spec2 pipeline performed on NIRISS SOSS data.
        """
        input_file = self.get_data(self.test_dir,
                                   'jw10003001002_03101_00001-seg003_nis_rateints.fits')
        collect_pipeline_cfgs()
        args = [
            'calwebb_tso-spec2.cfg',
            input_file
        ]
        Step.from_cmdline(args)

        outputs = [{'files':('jw10003001002_03101_00001-seg003_nis_calints.fits',
                    'jw10003001002_03101_00001-seg003_nis_calints_ref.fits'),
                    'pars':dict(ignore_hdus=['INT_TIMES', 'VAR_POISSON',
                                             'VAR_RNOISE', 'ASDF'])},
                   {'files':('jw10003001002_03101_00001-seg003_nis_x1dints.fits',
                    'jw10003001002_03101_00001-seg003_nis_x1dints_ref.fits'),
                    'pars':dict(ignore_hdus=['INT_TIMES', 'ASDF'])}
                  ]
        self.compare_outputs(outputs)
Пример #43
0
    def test_asn_naming(self):
        """Test a full run"""

        # Get the data
        collect_pipeline_cfgs('cfgs')
        asn_path = self.get_data(
            self.test_dir, 'wfs_3sets_asn.json'
        )
        with open(asn_path) as fh:
            asn = load_asn(fh)
        for product in asn['products']:
            for member in product['members']:
                self.get_data(
                    self.test_dir, member['expname']
                )
        input_files = glob('*')

        # Run the step.
        args = [
            op.join('cfgs', 'calwebb_wfs-image3.cfg'),
            asn_path
        ]
        Step.from_cmdline(args)

        # Test.
        output_files = glob('*')
        for input_file in input_files:
            output_files.remove(input_file)
        print('output_files = {}'.format(output_files))

        for product in asn['products']:
            prod_name = product['name']
            prod_name = format_product(prod_name, suffix='wfscmb')
            prod_name += '.fits'
            assert prod_name in output_files
            output_files.remove(prod_name)

        # There should be no more files
        assert len(output_files) == 0