Пример #1
0
    def to_esfilter(self, schema):
        output = OrOp([
            AndOp([self.when, BooleanOp(self.then)]),
            AndOp([NotOp(self.when), BooleanOp(self.els_)]),
        ]).partial_eval()

        return output.to_esfilter(schema)
Пример #2
0
 def to_esfilter(self, schema):
     if self.type == BOOLEAN:
         return (OrOp([AndOp([w.when, w.then]) for w in self.whens[:-1]] +
                      self.whens[-1:]).partial_eval().to_esfilter(schema))
     else:
         Log.error("do not know how to handle")
         return self.to_es_script(schema).script(schema).to_esfilter(schema)
Пример #3
0
    def to_esfilter(self, schema):
        if is_op(self.lhs, Variable_) and is_literal(self.rhs):
            rhs = self.rhs.value
            lhs = self.lhs.var
            cols = schema.leaves(lhs)
            if not cols:
                Log.warning(
                    "{{col}} does not exist while processing {{expr}}",
                    col=lhs,
                    expr=self.__data__(),
                )

            if is_container(rhs):
                if len(rhs) == 1:
                    rhs = rhs[0]
                else:
                    types = Data()  # MAP JSON TYPE TO LIST OF LITERALS
                    for r in rhs:
                        types[python_type_to_json_type[r.__class__]] += [r]
                    if len(types) == 1:
                        jx_type, values = first(types.items())
                        for c in cols:
                            if jx_type == c.jx_type or (jx_type in NUMBER_TYPES
                                                        and c.jx_type
                                                        in NUMBER_TYPES):
                                return {"terms": {c.es_column: values}}
                        return FALSE.to_esfilter(schema)
                    else:
                        return (OrOp([
                            EqOp([self.lhs, values])
                            for t, values in types.items()
                        ]).partial_eval().to_esfilter(schema))

            for c in cols:
                if c.jx_type == BOOLEAN:
                    rhs = pull_functions[c.jx_type](rhs)
                rhs_type = python_type_to_json_type[rhs.__class__]
                if rhs_type == c.jx_type or (rhs_type in NUMBER_TYPES
                                             and c.jx_type in NUMBER_TYPES):
                    return {"term": {c.es_column: rhs}}
            return FALSE.to_esfilter(schema)
        else:
            return (ES52[CaseOp([
                WhenOp(self.lhs.missing(), **{"then": self.rhs.missing()}),
                WhenOp(self.rhs.missing(), **{"then": FALSE}),
                BasicEqOp([self.lhs, self.rhs]),
            ]).partial_eval()].to_esfilter(schema))
Пример #4
0
    def to_es(self, schema):
        value = self.value
        if is_op(value, Variable):
            var = value.var
            cols = schema.leaves(var)
            if not cols:
                return MATCH_NONE
            col = first(cols)
            var = col.es_column

            if is_literal(self.superset):
                if col.jx_type == BOOLEAN:
                    if is_literal(self.superset) and not is_many(
                            self.superset.value):
                        return {
                            "term": {
                                var: value2boolean(self.superset.value)
                            }
                        }
                    else:
                        return {
                            "terms": {
                                var:
                                list(map(value2boolean, self.superset.value))
                            }
                        }
                else:
                    if is_literal(self.superset) and not is_many(
                            self.superset.value):
                        return {"term": {var: self.superset.value}}
                    else:
                        return {"terms": {var: self.superset.value}}
            elif is_op(self.superset, TupleOp):
                return (OrOp([EqOp([value, s]) for s in self.superset.terms
                              ]).partial_eval().to_es(schema))
        if (is_op(value, NestedOp) and is_literal(self.superset)
                and is_op(value.select, Variable)):
            output = (ES52[NestedOp(
                path=value.path,
                select=NULL,
                where=AndOp([value.where,
                             InOp([value.select, self.superset])]),
            )].exists().partial_eval().to_es(schema))
            return output
        # THE HARD WAY
        return Painless[self].to_es_script(schema).to_es(schema)
Пример #5
0
    def to_esfilter(self, schema):
        if is_op(self.value, Variable_):
            var = self.value.var
            cols = schema.leaves(var)
            if not cols:
                return MATCH_NONE
            col = first(cols)
            var = col.es_column

            if is_literal(self.superset):
                if col.jx_type == BOOLEAN:
                    if is_literal(self.superset) and not is_many(
                            self.superset.value):
                        return {
                            "term": {
                                var: value2boolean(self.superset.value)
                            }
                        }
                    else:
                        return {
                            "terms": {
                                var:
                                list(map(value2boolean, self.superset.value))
                            }
                        }
                else:
                    if is_literal(self.superset) and not is_many(
                            self.superset.value):
                        return {"term": {var: self.superset.value}}
                    else:
                        return {"terms": {var: self.superset.value}}
            elif is_op(self.superset, TupleOp):
                return (OrOp([
                    EqOp([self.value, s]) for s in self.superset.terms
                ]).partial_eval().to_esfilter(schema))
        # THE HARD WAY
        return Painless[self].to_es_script(schema).to_esfilter(schema)