def test_arc_sort(self): s = r''' 0 1 2 1 0 4 0 2 0 2 0 3 1 2 1 4 1 3 0 5 2 1 0 6 4 ''' fsa = k2host.str_to_fsa(s) sorter = k2host.ArcSorter(fsa) array_size = k2host.IntArray2Size() sorter.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) arc_map = k2host.IntArray1.create_array_with_size(array_size.size2) sorter.get_output(fsa_out, arc_map) expected_arc_indexes = torch.IntTensor([0, 3, 5, 6, 6, 6]) expected_arcs = torch.IntTensor([[0, 2, 0, float_to_int(3)], [0, 4, 0, float_to_int(2)], [0, 1, 2, float_to_int(1)], [1, 3, 0, float_to_int(5)], [1, 2, 1, float_to_int(4)], [2, 1, 0, float_to_int(6)]]) expected_arc_map = torch.IntTensor([2, 1, 0, 4, 3, 5]) self.assertTrue(torch.equal(fsa_out.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(fsa_out.data, expected_arcs)) self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
def test_bad_cases1(self): s = r''' 0 2 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_connected(fsa))
def test_good_case_2(self): s_a = r''' 0 1 1 0 1 2 3 0 2 3 4 0 3 4 -1 0 4 ''' fsa = k2host.str_to_fsa(s_a) rand_path = k2host.RandPath(fsa, False) array_size = k2host.IntArray2Size() rand_path.get_sizes(array_size) path = k2host.Fsa.create_fsa_with_size(array_size) arc_map = k2host.IntArray1.create_array_with_size(array_size.size2) status = rand_path.get_output(path, arc_map) self.assertTrue(status) self.assertFalse(k2host.is_empty(path)) self.assertFalse(arc_map.empty()) expected_arc_indexes = torch.IntTensor([0, 1, 2, 3, 4, 4]) expected_arcs = torch.IntTensor([[0, 1, 1, 0], [1, 2, 3, 0], [2, 3, 4, 0], [3, 4, -1, 0]]) expected_arc_map = torch.IntTensor([0, 1, 2, 3]) self.assertTrue(torch.equal(path.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(path.data, expected_arcs)) self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
def test_bad_case1(self): s = r''' 0 1 2 0 1 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_empty(fsa))
def test_fsa(self): s = r''' 0 1 1 1.25 0 2 2 1.5 1 3 3 1.75 2 3 3 2.25 3 4 -1 2.5 4 ''' fsa = k2host.str_to_fsa(s) self.assertEqual(fsa.num_states(), 5) self.assertEqual(fsa.final_state(), 4) self.assertFalse(fsa.empty()) self.assertIsInstance(fsa, k2host.Fsa) # test get_data self.assertEqual(fsa.get_data(0).src_state, 0) self.assertEqual(fsa.get_data(0).dest_state, 1) self.assertEqual(fsa.get_data(0).label, 1) self.assertEqual(fsa.get_data(0).weight, 1.25) self.assertEqual(fsa.get_data(1).weight, 1.5) self.assertEqual(fsa.get_data(2).weight, 1.75) self.assertEqual(fsa.get_data(3).weight, 2.25) self.assertEqual(fsa.get_data(4).weight, 2.5) # fsa.data and the corresponding k2host::Fsa object are sharing memory fsa.data[0] = torch.IntTensor([5, 1, 6, 1]) self.assertEqual(fsa.get_data(0).src_state, 5)
def test_case_4(self): # connected fsa s = r''' 0 4 40 0 0 2 20 0 1 6 -1 0 2 3 30 0 3 6 -1 0 3 1 10 0 4 5 50 0 5 2 8 0 6 ''' fsa = k2host.str_to_fsa(s) sorter = k2host.TopSorter(fsa) array_size = k2host.IntArray2Size() sorter.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) arc_map = k2host.IntArray1.create_array_with_size(array_size.size2) status = sorter.get_output(fsa_out, arc_map) self.assertTrue(status) expected_arc_indexes = torch.IntTensor([0, 2, 3, 4, 5, 7, 8, 8]) expected_arcs = torch.IntTensor([[0, 1, 40, 0], [0, 3, 20, 0], [1, 2, 50, 0], [2, 3, 8, 0], [3, 4, 30, 0], [4, 6, -1, 0], [4, 5, 10, 0], [5, 6, -1, 0]]) expected_arc_map = torch.IntTensor([0, 1, 6, 7, 3, 4, 5, 2]) self.assertTrue(torch.equal(fsa_out.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(fsa_out.data, expected_arcs)) self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
def test_case_2(self): # a cyclic input fsa # after trimming, the cycle is removed; # so the output fsa should be topsorted. s = r''' 0 1 1 0 0 2 2 1 1 3 3 -2 1 6 6 -3 2 4 2 4 2 6 3 5 2 6 -1 6 5 0 1 7 5 7 -1 8 7 ''' fsa = k2host.str_to_fsa(s) connection = k2host.Connection(fsa) array_size = k2host.IntArray2Size() connection.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) arc_map = k2host.IntArray1.create_array_with_size(array_size.size2) status = connection.get_output(fsa_out, arc_map) self.assertTrue(status) self.assertTrue(k2host.is_empty(fsa_out)) self.assertTrue(arc_map.empty())
def test_case_1(self): # a non-connected, non-topsorted, acyclic input fsa; # the output fsa is topsorted. s = r''' 0 1 1 0 0 2 2 0 1 3 3 0 1 6 -1 0 2 4 2 0 2 6 -1 0 2 1 1 0 5 0 1 0 6 ''' fsa = k2host.str_to_fsa(s) connection = k2host.Connection(fsa) array_size = k2host.IntArray2Size() connection.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) arc_map = k2host.IntArray1.create_array_with_size(array_size.size2) status = connection.get_output(fsa_out, arc_map) self.assertTrue(status) expected_arc_indexes = torch.IntTensor([0, 2, 4, 5, 5]) expected_arcs = torch.IntTensor([[0, 2, 1, 0], [0, 1, 2, 0], [1, 3, -1, 0], [1, 2, 1, 0], [2, 3, -1, 0]]) expected_arc_map = torch.IntTensor([0, 1, 5, 6, 3]) self.assertTrue(torch.equal(fsa_out.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(fsa_out.data, expected_arcs)) self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
def test_case_4(self): # a cyclic input fsa # after trimming, the cycle remains (it is not a self-loop); # so the output fsa is NOT topsorted. s = r''' 0 3 3 1 0 2 2 2 1 0 1 3 2 6 -1 4 3 5 5 5 3 2 2 6 3 5 5 7 4 4 4 8 5 3 3 9 5 4 4 10 6 ''' fsa = k2host.str_to_fsa(s) connection = k2host.Connection(fsa) array_size = k2host.IntArray2Size() connection.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) status = connection.get_output(fsa_out) self.assertFalse(status) self.assertFalse(k2host.is_top_sorted(fsa_out))
def test_good_case_1(self): # both fsas will be empty after trimming s_a = r''' 0 1 1 0 0 2 2 0 1 2 3 0 3 ''' fsa_a = k2host.str_to_fsa(s_a) s_b = r''' 0 1 1 0 0 2 2 0 3 ''' fsa_b = k2host.str_to_fsa(s_b) self.assertTrue(k2host.is_rand_equivalent(fsa_a, fsa_b))
def test_arc_sort(self): s = r''' 0 1 2 1 0 4 0 2 0 2 0 3 1 2 1 4 1 3 0 5 2 1 0 6 4 ''' fsa = k2host.str_to_fsa(s) arc_map = k2host.IntArray1.create_array_with_size(fsa.size2) k2host.arc_sort(fsa, arc_map) expected_arc_indexes = torch.IntTensor([0, 3, 5, 6, 6, 6]) expected_arcs = torch.IntTensor([[0, 2, 0, float_to_int(3)], [0, 4, 0, float_to_int(2)], [0, 1, 2, float_to_int(1)], [1, 3, 0, float_to_int(5)], [1, 2, 1, float_to_int(4)], [2, 1, 0, float_to_int(6)]]) expected_arc_map = torch.IntTensor([2, 1, 0, 4, 3, 5]) self.assertTrue(torch.equal(fsa.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(fsa.data, expected_arcs)) self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
def test_case_2(self): s_a = r''' 0 1 1 0 1 2 0 0 1 3 1 0 1 4 2 0 2 2 1 0 2 3 1 0 2 3 2 0 3 3 0 0 3 4 1 0 4 ''' fsa_a = k2host.str_to_fsa(s_a) s_b = r''' 0 1 1 0 1 3 1 0 1 2 2 0 2 3 1 0 3 ''' fsa_b = k2host.str_to_fsa(s_b) intersection = k2host.Intersection(fsa_a, fsa_b) array_size = k2host.IntArray2Size() intersection.get_sizes(array_size) fsa_out = k2host.Fsa.create_fsa_with_size(array_size) arc_map_a = k2host.IntArray1.create_array_with_size(array_size.size2) arc_map_b = k2host.IntArray1.create_array_with_size(array_size.size2) status = intersection.get_output(fsa_out, arc_map_a, arc_map_b) self.assertTrue(status) expected_arc_indexes = torch.IntTensor([0, 1, 4, 7, 8, 8, 8, 10, 10]) expected_arcs = torch.IntTensor([[0, 1, 1, 0], [1, 2, 0, 0], [1, 3, 1, 0], [1, 4, 2, 0], [2, 5, 1, 0], [2, 3, 1, 0], [2, 6, 2, 0], [3, 3, 0, 0], [6, 6, 0, 0], [6, 7, 1, 0]]) expected_arc_map_a = torch.IntTensor([0, 1, 2, 3, 4, 5, 6, 7, 7, 8]) expected_arc_map_b = torch.IntTensor([0, -1, 1, 2, 1, 1, 2, -1, -1, 3]) self.assertTrue(torch.equal(fsa_out.indexes, expected_arc_indexes)) self.assertTrue(torch.equal(fsa_out.data, expected_arcs)) self.assertTrue(torch.equal(arc_map_a.data, expected_arc_map_a)) self.assertTrue(torch.equal(arc_map_b.data, expected_arc_map_b))
def test_good_case2(self): s = r''' 0 1 0 0 0 2 0 0 1 2 0 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_top_sorted(fsa))
def test_good_case3(self): s = r''' 0 1 0 0 0 2 -1 0 1 2 -1 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_valid(fsa))
def test_good_case2(self): s = r''' 0 1 2 0 0 2 1 0 1 2 1 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_epsilon_free(fsa))
def test_bad_cases2(self): # same label on two arcs s = r''' 0 2 0 0 0 1 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_arc_sorted(fsa))
def test_good_case2(self): s = r''' 0 1 2 0 1 2 0 0 1 3 2 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_deterministic(fsa))
def test_bad_cases1(self): s = r''' 0 1 2 0 0 2 0 0 1 2 1 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_epsilon_free(fsa))
def test_bad_cases1(self): s = r''' 0 1 2 0 1 2 0 0 1 3 0 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_deterministic(fsa))
def test_good_case2(self): s = r''' 0 1 0 0 1 2 0 0 1 1 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.has_self_loops(fsa))
def test_bad_cases1(self): s = r''' 0 1 0 0 0 2 0 0 2 1 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_top_sorted(fsa))
def test_good_case2(self): s = r''' 0 1 0 0 0 2 0 0 2 3 -1 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_valid(fsa))
def test_bad_cases1(self): s = r''' 0 1 0 0 0 2 0 0 1 2 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.has_self_loops(fsa))
def test_bad_case_1(self): # just set arc.weight as 0 since we won't use it here s_a = r''' 0 1 1 0 0 2 2 0 1 2 3 0 1 3 4 0 2 3 5 0 3 ''' fsa_a = k2host.str_to_fsa(s_a) s_b = r''' 0 1 1 0 0 2 2 0 1 2 3 0 3 ''' fsa_b = k2host.str_to_fsa(s_b) self.assertFalse(k2host.is_rand_equivalent(fsa_a, fsa_b))
def test_bad_cases1(self): s = r''' 0 1 1 0 0 2 2 0 1 2 2 0 1 3 1 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_arc_sorted(fsa))
def test_bad_case2(self): # only kFinalSymbol arcs enter the final state s = r''' 0 1 0 0 0 2 1 0 1 2 0 0 2 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_valid(fsa))
def test_bad_case_2(self): s_a = r''' 0 1 1 0 0 2 2 0 1 2 3 0 1 3 4 0 2 3 5 0 3 ''' fsa_a = k2host.str_to_fsa(s_a) s_b = r''' 0 1 1 0 0 2 2 0 1 2 3 0 1 3 4 0 2 3 6 0 3 ''' fsa_b = k2host.str_to_fsa(s_b) self.assertFalse(k2host.is_rand_equivalent(fsa_a, fsa_b, 100))
def test_good_case2(self): s = r''' 0 1 2 0 0 2 1 0 1 2 0 0 1 3 5 0 2 3 6 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertTrue(k2host.is_acyclic(fsa))
def test_bad_case_2(self): s_a = r''' 0 1 1 0 0 2 2 0 0 3 8 0 1 4 4 0 2 4 5 0 4 ''' fsa_a = k2host.str_to_fsa(s_a) s_b = r''' 0 2 1 0 0 1 2 0 0 3 9 0 1 4 5 0 2 4 4 0 4 ''' fsa_b = k2host.str_to_fsa(s_b) self.assertTrue(k2host.is_rand_equivalent(fsa_a, fsa_b))
def test_bad_cases1(self): s = r''' 0 1 2 0 0 4 0 0 0 2 0 0 1 2 1 0 1 3 0 0 2 1 0 0 3 ''' fsa = k2host.str_to_fsa(s) self.assertFalse(k2host.is_acyclic(fsa))