# Vindt de optimale K met behulp van de validatieset en beantwoordt de vraag met deze K. from kNN import findK, scale, genDataSet, genLabels, findLabel, findminmax, scale2 import time #generate dataset and validationset data = genDataSet("dataset1.csv") scalers = findminmax(data) weights = [1, 1, 2, 4, 2, 1, 3] scaleddata = scale2(data, scalers, weights) scaledvaliddata = scale2(genDataSet("validation1.csv"), scalers, weights) scaledtestdata = scale2(genDataSet("days.csv"), scalers, weights) #generate labels for aformentioned sets labels = genLabels("dataset1.csv", 2000) validlabels = genLabels("validation1.csv", 2001) # #find optimal K value and corresponding accuracy t = time.localtime() current_time = time.strftime("%H:%M:%S", t) print(current_time) accuracy, optimalK = findK(scaleddata, scaledvaliddata, labels, validlabels) t = time.localtime() current_time = time.strftime("%H:%M:%S", t) print(current_time) # # generate and print labels for testdata print(findLabel(scaleddata, scaledtestdata, labels, optimalK)) print("Used K: ", optimalK) print("Accuracy validationset: ", accuracy)
# Beantwoordt de vraag met gegeven K from kNN import findK, scale, genDataSet, genLabels, findLabel #generate dataset scaleddata = scale(genDataSet("dataset1.csv")) #generate validationset scaledtestdata = scale(genDataSet("days.csv")) #generate list of labels for dataset labels = genLabels("dataset1.csv", 2000) #generate and print labels for testdata print(findLabel(scaleddata, scaledtestdata, labels, 61))