patience=5,
                                                           min_lr=0.00001)

    test_mask = torch.zeros(len(dataset), dtype=torch.uint8)
    n = len(dataset) // 10
    test_mask[i * n:(i + 1) * n] = 1
    test_dataset = dataset[test_mask]
    train_dataset = dataset[1 - test_mask]

    n = len(train_dataset) // 10
    val_mask = torch.zeros(len(train_dataset), dtype=torch.uint8)
    val_mask[i * n:(i + 1) * n] = 1
    val_dataset = train_dataset[val_mask]
    train_dataset = train_dataset[1 - val_mask]

    val_loader = DataLoader(val_dataset, batch_size=BATCH)
    test_loader = DataLoader(test_dataset, batch_size=BATCH)
    train_loader = DataLoader(train_dataset, batch_size=BATCH, shuffle=True)

    print('---------------- Split {} ----------------'.format(i))

    best_val_loss, test_acc = 100, 0
    for epoch in range(1, 101):
        lr = scheduler.optimizer.param_groups[0]['lr']
        train_loss = train(epoch, train_loader, optimizer)
        val_loss = val(val_loader)
        scheduler.step(val_loss)
        if best_val_loss >= val_loss:
            test_acc = test(test_loader)
            best_val_loss = val_loss
        print('Epoch: {:03d}, LR: {:7f}, Train Loss: {:.7f}, '
Пример #2
0
dataset.data.iso_type_3 = torch.unique(dataset.data.iso_type_3, True, True)[1]
num_i_3 = dataset.data.iso_type_3.max().item() + 1
dataset.data.iso_type_3 = one_hot(dataset.data.iso_type_3, num_classes=num_i_3)

dataset = dataset.shuffle()

# Normalize targets to mean = 0 and std = 1.
tenpercent = int(len(dataset) * 0.1)
mean = dataset.data.y[tenpercent:].mean(dim=0)
std = dataset.data.y[tenpercent:].std(dim=0)
dataset.data.y = (dataset.data.y - mean) / std

test_dataset = dataset[:tenpercent]
val_dataset = dataset[tenpercent:2 * tenpercent]
train_dataset = dataset[2 * tenpercent:]
test_loader = DataLoader(test_dataset, batch_size=64)
val_loader = DataLoader(val_dataset, batch_size=64)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        M_in, M_out = dataset.num_features, 32
        nn1 = Sequential(Linear(5, 128), ReLU(), Linear(128, M_in * M_out))
        self.conv1 = NNConv(M_in, M_out, nn1)

        M_in, M_out = M_out, 64
        nn2 = Sequential(Linear(5, 128), ReLU(), Linear(128, M_in * M_out))
        self.conv2 = NNConv(M_in, M_out, nn2)