X, Z = core.prepare_data(coords, z_values, {"rcs_1":rcs_1, "rcs_2":rcs_2}) labels = core.apply_algo(X, 3) blh = utils.blh_from_labels(labels, Z) blhs_over_profile(z_values, rcs_1, blh, labels=labels) plt.figure() plt.hist(rcs_1, 35) plt.title("Histogram of a single profile of RCS") plt.show(block=False) # Test of blhs_over_data # ------------------------ print("\n --------------- Test of blhs_over_data") testFile = paths.file_defaultlidardata() blh = core.blh_estimation(testFile) t_values, z_values, rcss = utils.extract_data(testFile) rcs_1 = rcss["rcs_1"] rcs_2 = rcss["rcs_2"] blhs_over_data(t_values, z_values, rcs_1, blh) # Test of scatterplot_blhs # ------------------------ print("\n --------------- Test of scatterplot_blhs") outputFile = paths.file_defaultoutput() t_values, z_values, dat = utils.extract_data( outputFile, to_extract=["blh_kabl", "pbl"] ) blh_new = dat["blh_kabl"] blh_mnf = dat["pbl"]
import datetime as dt import pytz import sys import time import netCDF4 as nc lidarFile = paths.file_defaultcl31data() t_values, z_values, rcss = utils.extract_data(lidarFile, max_height=4620, to_extract=["rcs_0"]) rcs_0 = rcss["rcs_0"] # Estimation with KABL # ---------------------- params = utils.get_default_params() params["n_clusters"] = 3 params["predictors"] = {"day": ["rcs_0"], "night": ["rcs_0"]} params["n_profiles"] = 1 params["init"] = "advanced" blh_kabl = core.blh_estimation(lidarFile, storeInNetcdf=False, params=params) # Plot # ------ graphics.storeImages = False graphics.blhs_over_data(t_values, z_values, rcs_0, [blh_kabl], ['KABL']) input("\n Press Enter to exit (close down all figures)\n")