#training model for TF from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import tempfile import shutil import numpy as np import deepchem as dc from kaggle_datasets import load_kaggle sh_size = 2000 num_trials = 2 KAGGLE_tasks, datasets, transformers = load_kaggle(sh_size=sh_size) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) all_results = [] for trial in range(num_trials): #create the actual model n_layers = 3 nb_epoch = 100 model = dc.models.TensorflowMultiTaskRegressor(
from __future__ import unicode_literals import os import numpy as np import tempfile import shutil import deepchem as dc from sklearn.ensemble import RandomForestRegressor from kaggle_datasets import load_kaggle ###Load data### np.random.seed(123) shard_size = 2000 num_shards_per_batch = 4 print("About to load KAGGLE data.") KAGGLE_tasks, datasets, transformers = load_kaggle( shard_size=shard_size, num_shards_per_batch=num_shards_per_batch) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) num_features = train_dataset.get_data_shape()[0] print("Num features: %d" % num_features) def task_model_builder(model_dir): sklearn_model = RandomForestRegressor( n_estimators=100, max_features=int(num_features/3),
from __future__ import division from __future__ import unicode_literals import os import numpy as np import tempfile import shutil import deepchem as dc from kaggle_datasets import load_kaggle ###Load data### shard_size = 2000 num_trials = 2 print("About to load KAGGLE data.") KAGGLE_tasks, datasets, transformers = load_kaggle(shard_size=shard_size) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) metric = dc.metrics.Metric(dc.metrics.pearson_r2_score, task_averager=np.mean) ###Create model### n_layers = 3 nb_epoch = 100 n_features = train_dataset.get_data_shape()[0]