Пример #1
0
def read_args(args):
    segments, labels = read_labels_file(args.input_label_file)
    xvec_all = dict(kaldi_io.read_vec_flt_ark(args.xvector_ark_file))
    xvectors = []
    for segment in segments:
        xvectors.append(xvec_all[segment])
    _, _, plda_psi = kaldi_io.read_plda(args.plda)
    return xvectors, segments, labels, plda_psi
Пример #2
0
def read_args(args):
    segments, labels = read_labels_file(args.input_label_file)
    xvec_all = dict(kaldi_io.read_vec_flt_ark(args.xvector_ark_file))
    xvectors = []
    for segment in segments:
        xvectors.append(xvec_all[segment])
    _, _, plda_psi = kaldi_io.read_plda(args.plda)
    if (args.overlap_rttm is not None):
        print('Getting overlap segments...')
        overlaps = get_overlap_vector(args.overlap_rttm, segments)
    else:
        overlaps = None
    return xvectors, segments, labels, plda_psi, overlaps
    sys.argv[12]
)  # For VB-HMM, x-vectors are reduced to this dimensionality using LDA
Fa = float(
    sys.argv[13])  # Parameter of VB-HMM (see VB_diarization.VB_diarization)
Fb = float(
    sys.argv[14])  # Parameter of VB-HMM (see VB_diarization.VB_diarization)
LoopP = float(
    sys.argv[15])  # Parameter of VB-HMM (see VB_diarization.VB_diarization)
use_VB = True  # False for using only AHC

frm_shift = 0.01  # frame rate of MFCC features

glob_tran = kaldi_io.read_mat(
    tran_mat_file)  # x-vector whitening transformation
glob_mean = kaldi_io.read_vec_flt(mean_vec_file)  # x-vector centering vector
kaldi_plda_train = kaldi_io.read_plda(plda_file)  # out-of-domain PLDA model
kaldi_plda_adapt = kaldi_io.read_plda(
    plda_adapt_file)  # in-domain "adaptation" PLDA model
segs_dict = read_xvector_timing_dict(
    segments_file)  # segments file with x-vector timing information

plda_train_mu, plda_train_tr, plda_train_psi = kaldi_plda_train
plda_adapt_mu, plda_adapt_tr, plda_adapt_psi = kaldi_plda_adapt

# Interpolate across-class, within-class and means of the two PLDA models with interpolation factor "alpha"
plda_mu = alpha * plda_train_mu + (1.0 - alpha) * plda_adapt_mu
W_train = np.linalg.inv(plda_train_tr.T.dot(plda_train_tr))
B_train = np.linalg.inv((plda_train_tr.T / plda_train_psi).dot(plda_train_tr))
W_adapt = np.linalg.inv(plda_adapt_tr.T.dot(plda_adapt_tr))
B_adapt = np.linalg.inv((plda_adapt_tr.T / plda_adapt_psi).dot(plda_adapt_tr))
W = alpha * W_train + (1.0 - alpha) * W_adapt