def adapt(self, mcmc_chain, step_output):
     # this is an extension of the base adapt call
     KameleonWindow.adapt(self, mcmc_chain, step_output)
     
     iter_no = mcmc_chain.iteration
     
     if iter_no > self.sample_discard and iter_no < self.stop_adapt:
         learn_scale = 1.0 / sqrt(iter_no - self.sample_discard + 1.0)
         self.nu2 = exp(log(self.nu2) + learn_scale * (exp(step_output.log_ratio) - self.accstar))
    def adapt(self, mcmc_chain, step_output):
        # this is an extension of the base adapt call
        KameleonWindow.adapt(self, mcmc_chain, step_output)

        iter_no = mcmc_chain.iteration

        if iter_no > self.sample_discard and iter_no < self.stop_adapt:
            learn_scale = 1.0 / sqrt(iter_no - self.sample_discard + 1.0)
            self.nu2 = exp(
                log(self.nu2) + learn_scale *
                (exp(step_output.log_ratio) - self.accstar))
Пример #3
0
def main():
    distribution = Banana(dimension=8, bananicity=0.1, V=100.0)

    sigma = 5
    print "using sigma", sigma
    kernel = GaussianKernel(sigma=sigma)

    mcmc_sampler = KameleonWindow(distribution, kernel)

    start = zeros(distribution.dimension)
    mcmc_params = MCMCParams(start=start, num_iterations=80000)
    chain = MCMCChain(mcmc_sampler, mcmc_params)

    #    chain.append_mcmc_output(PlottingOutput(distribution, plot_from=3000))
    chain.append_mcmc_output(StatisticsOutput(plot_times=True))
    chain.run()

    print distribution.emp_quantiles(chain.samples)
    def __init__(self, distribution, kernel, nu2=0.1, gamma=None, \
                 sample_discard=500, num_samples_Z=1000, stop_adapt=20000, accstar=0.234):
        KameleonWindow.__init__(self, distribution, kernel, nu2, gamma, \
                                  sample_discard, num_samples_Z, stop_adapt)

        self.accstar = accstar
 def __str__(self):
     s = self.__class__.__name__ + "=["
     s += "accstar=" + str(self.accstar)
     s += ", " + KameleonWindow.__str__(self)
     s += "]"
     return s
 def __init__(self, distribution, kernel, nu2=0.1, gamma=0.1, \
              sample_discard=500, num_samples_Z=1000, stop_adapt=20000, accstar=0.234):
     KameleonWindow.__init__(self, distribution, kernel, nu2, gamma, \
                               sample_discard, num_samples_Z, stop_adapt)
     
     self.accstar = accstar
 def __str__(self):
     s = self.__class__.__name__ + "=["
     s += "accstar=" + str(self.accstar)
     s += ", " + KameleonWindow.__str__(self)
     s += "]"
     return s