Пример #1
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.initializers, "tf.keras.initializers"):
    loc[k] = v

del loc, wrap
Пример #2
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.optimizers, "tf.keras.optimizers"):
    loc[k] = v

del loc, wrap
Пример #3
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.losses, "tf.keras.losses"):
    loc[k] = v

del loc, wrap
Пример #4
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.optimizers.schedules,
                               "tf.keras.optimizers.schedules"):
    loc[k] = v

del loc, wrap
Пример #5
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.constraints, "tf.keras.constraints"):
    loc[k] = v

del loc, wrap
Пример #6
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.layers, "tf.keras.layers"):
    loc[k] = v

# make linters shut up
BatchNormalization = loc["BatchNormalization"]
Dense = loc["Dense"]
Convolution1D = loc["Convolution1D"]
Conv1D = loc["Conv1D"]
Convolution2D = loc["Convolution2D"]
Conv2D = loc["Conv2D"]
Convolution3D = loc["Convolution3D"]
Conv3D = loc["Conv3D"]
Dropout = loc["Dropout"]
AlphaDropout = loc["AlphaDropout"]

del loc, wrap
Пример #7
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.regularizers, "tf.keras.regularizers"):
    loc[k] = v

del loc, wrap
Пример #8
0
import tensorflow as tf

from kblocks.keras import wrap

loc = locals()
for k, v in wrap.wrapped_items(tf.keras.metrics, "tf.keras.metrics"):
    loc[k] = v

del loc, wrap
Пример #9
0
import gin
import tensorflow as tf

from kblocks.keras import wrap
from kblocks.utils import super_signature

loc = locals()
for k, v in wrap.wrapped_items(
        tf.keras.callbacks,
        "tf.keras.callbacks",
        blacklist=wrap.BLACKLIST +
    ("LearningRateScheduler", "ReduceLROnPlateau"),
):
    loc[k] = v

# make linter shut up
TensorBoard = loc["TensorBoard"]
CSVLogger = loc["CSVLogger"]
EarlyStopping = loc["EarlyStopping"]
BackupAndRestore = gin.external_configurable(
    tf.keras.callbacks.experimental.BackupAndRestore,
    module="tf.keras.callbacks")

del loc, wrap

# add _supports_tf_logs = True
# Github issue: https://github.com/tensorflow/tensorflow/issues/45895


@gin.configurable(module="tf.keras.callbacks")
@super_signature