import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.initializers, "tf.keras.initializers"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.optimizers, "tf.keras.optimizers"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.losses, "tf.keras.losses"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.optimizers.schedules, "tf.keras.optimizers.schedules"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.constraints, "tf.keras.constraints"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.layers, "tf.keras.layers"): loc[k] = v # make linters shut up BatchNormalization = loc["BatchNormalization"] Dense = loc["Dense"] Convolution1D = loc["Convolution1D"] Conv1D = loc["Conv1D"] Convolution2D = loc["Convolution2D"] Conv2D = loc["Conv2D"] Convolution3D = loc["Convolution3D"] Conv3D = loc["Conv3D"] Dropout = loc["Dropout"] AlphaDropout = loc["AlphaDropout"] del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.regularizers, "tf.keras.regularizers"): loc[k] = v del loc, wrap
import tensorflow as tf from kblocks.keras import wrap loc = locals() for k, v in wrap.wrapped_items(tf.keras.metrics, "tf.keras.metrics"): loc[k] = v del loc, wrap
import gin import tensorflow as tf from kblocks.keras import wrap from kblocks.utils import super_signature loc = locals() for k, v in wrap.wrapped_items( tf.keras.callbacks, "tf.keras.callbacks", blacklist=wrap.BLACKLIST + ("LearningRateScheduler", "ReduceLROnPlateau"), ): loc[k] = v # make linter shut up TensorBoard = loc["TensorBoard"] CSVLogger = loc["CSVLogger"] EarlyStopping = loc["EarlyStopping"] BackupAndRestore = gin.external_configurable( tf.keras.callbacks.experimental.BackupAndRestore, module="tf.keras.callbacks") del loc, wrap # add _supports_tf_logs = True # Github issue: https://github.com/tensorflow/tensorflow/issues/45895 @gin.configurable(module="tf.keras.callbacks") @super_signature