def create_timeseries_plot(recording): out = CreateTimeseriesPlot.execute(recording_dir=recording['directory'], channels=recording.get('channels', []), jpg_out={ 'ext': '.jpg' }).outputs['jpg_out'] kb.saveFile(out) return 'sha1://' + kb.computeFileSha1(out) + '/timeseries.jpg'
def create_waveforms_plot(recording, firings): out = CreateWaveformsPlot.execute(recording_dir=recording['directory'], channels=recording.get('channels', []), units=recording.get('units_true', []), firings=firings, jpg_out={ 'ext': '.jpg' }).outputs['jpg_out'] kb.saveFile(out) return 'sha1://' + kb.computeFileSha1(out) + '/waveforms.jpg'
def summarize_recording(recording): ret = deepcopy(recording) ret['computed_info'] = compute_recording_info(recording) firings_true_path = recording['directory'] + '/firings_true.mda' ret['plots'] = dict(timeseries=create_timeseries_plot(recording)) channels = recording.get('channels', None) units = recording.get('units_true', None) if kb.findFile(firings_true_path): ret['firings_true'] = firings_true_path ret['plots']['waveforms_true'] = create_waveforms_plot( recording, ret['firings_true']) true_units_info_fname = compute_units_info( recording_dir=recording['directory'], firings=firings_true_path, return_format='filename', channel_ids=channels, unit_ids=units) kb.saveFile(true_units_info_fname) ret['true_units_info'] = 'sha1://' + kb.computeFileSha1( true_units_info_fname) + '/true_units_info.json' return ret
def create_waveforms_plot(dataset,firings): out=CreateWaveformsPlot.execute(recording_dir=dataset['directory'],firings=firings,jpg_out={'ext':'.jpg'}).outputs['jpg_out'] kb.saveFile(out) return 'sha1://'+kb.computeFileSha1(out)+'/waveforms.jpg'
def create_timeseries_plot(dataset): out=CreateTimeseriesPlot.execute(recording_dir=dataset['directory'],jpg_out={'ext':'.jpg'}).outputs['jpg_out'] kb.saveFile(out) return 'sha1://'+kb.computeFileSha1(out)+'/timeseries.jpg'