Пример #1
0
def experiment(state, channel):

    DS = Dataset(is_binary=True)
    DS.setup_dataset(data_path=state.dataset)

    kfoldCrossValidation = KfoldCrossvalidation(no_of_folds=state.no_of_folds)

    cs_args = {
        "train_args": {
            "L1_reg": state.l1_reg,
            "learning_rate": state.learning_rate,
            "L2_reg": state.l2_reg,
            "nepochs": state.n_epochs,
            "cost_type": state.cost_type,
            "save_exp_data": state.save_exp_data,
            "batch_size": state.batch_size
        },
        "test_args": {
            "save_exp_data": state.save_exp_data,
            "batch_size": state.batch_size
        }
    }

    post_input = T.matrix('post_input')
    mlp = PostMLP(post_input,
                  n_in=state.n_in,
                  n_hiddens=state.n_hiddens,
                  n_out=state.n_out,
                  n_hidden_layers=state.n_hidden_layers,
                  is_binary=True,
                  exp_id=state.exid)

    valid_errs, test_errs = kfoldCrossValidation.crossvalidate(DS.Xtrain, \
    DS.Ytrain, DS.Xtest, DS.Ytest, mlp, **cs_args)

    errors = \
    kfoldCrossValidation.get_best_valid_scores(valid_errs, test_errs)

    state.best_valid_error = errors["valid_scores"]["error"]

    state.best_test_error = errors["test_scores"]["error"]

    return channel.COMPLETE
Пример #2
0
def experiment(state, channel):

    DS = Dataset(is_binary=True)
    DS.setup_dataset(data_path=state.dataset)

    kfoldCrossValidation = KfoldCrossvalidation(no_of_folds=state.no_of_folds)

    cs_args = {
        "train_args":{
         "L1_reg": state.l1_reg,
         "learning_rate": state.learning_rate,
         "L2_reg": state.l2_reg,
         "nepochs":state.n_epochs,
         "cost_type": state.cost_type,
         "save_exp_data": state.save_exp_data,
         "batch_size": state.batch_size
        },
        "test_args":{
         "save_exp_data": state.save_exp_data,
         "batch_size": state.batch_size
        }
    }

    post_input = T.matrix('post_input')
    mlp = PostMLP(post_input, n_in=state.n_in, n_hiddens=state.n_hiddens,
    n_out=state.n_out, n_hidden_layers=state.n_hidden_layers,
    is_binary=True, exp_id=state.exid)

    valid_errs, test_errs = kfoldCrossValidation.crossvalidate(DS.Xtrain, \
    DS.Ytrain, DS.Xtest, DS.Ytest, mlp, **cs_args)

    errors = \
    kfoldCrossValidation.get_best_valid_scores(valid_errs, test_errs)

    state.best_valid_error = errors["valid_scores"]["error"]

    state.best_test_error = errors["test_scores"]["error"]

    return channel.COMPLETE
Пример #3
0
    def get_logger(self):
        logger = logging.getLogger("Crossvalidation")
        logger.setLevel(logging.INFO)

        # create file handler which logs even debug messages
        fh = logging.FileHandler("svm_tetromino_crossvalidation.log")
        fh.setLevel(logging.DEBUG)

        # create formatter
        formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
        fh.setFormatter(formatter)
        logger.addHandler(fh)

        return logger


if __name__ == "__main__":
    from kcv import KfoldCrossvalidation

    DS = Dataset(is_binary=True)
    DS.setup_dataset(data_path="/home/gulcehre/dataset/pentomino/pieces/pento64x64_4k_task4_seed_98981222.npy")
    kfoldCrossValidation = KfoldCrossvalidation(no_of_folds=2)

    cs_args = {"train_args": {"kern": "rbf", "gamma": 0.01, "C": 10}, "test_args": {"binary_data": True}}

    csvm = CSVM()
    valid_errs, test_errs = kfoldCrossValidation.crossvalidate(
        DS.Xtrain, DS.Ytrain, DS.Xtest, DS.Ytest, csvm, **cs_args
    )
Пример #4
0
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
        logger.addHandler(fh)

        return logger


if __name__ == "__main__":
    from kcv import KfoldCrossvalidation

    DS = Dataset(is_binary=True)
    DS.setup_dataset(
        data_path=
        "/home/gulcehre/dataset/pentomino/pieces/pento64x64_4k_task4_seed_98981222.npy"
    )
    kfoldCrossValidation = KfoldCrossvalidation(no_of_folds=2)

    cs_args = {
        "train_args": {
            "kern": "rbf",
            "gamma": 0.01,
            "C": 10
        },
        "test_args": {
            "binary_data": True
        }
    }

    csvm = CSVM()
    valid_errs, test_errs = kfoldCrossValidation.crossvalidate(
        DS.Xtrain, DS.Ytrain, DS.Xtest, DS.Ytest, csvm, **cs_args)