Пример #1
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
Пример #3
0
    def runTest(self):
        axis, nx, ny, nz, precision_float = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, '', precision_float)
        pbc = Pbc(fields, axis)

        # allocations
        ehs = common_update.generate_random_ehs(nx, ny, nz, fields.dtype)
        fields.set_eh_bufs(*ehs)

        # update
        fields.update_e()
        fields.update_h()

        # verify
        getf0, getf1 = {}, {}
        strfs_e = {'x':['ey', 'ez'], 'y':['ex', 'ez'], 'z':['ex', 'ey']}[axis]
        strfs_h = {'x':['hy', 'hz'], 'y':['hx', 'hz'], 'z':['hx', 'hy']}[axis]

        pt0 = (0, 0, 0)
        pt1 = { 'x': (0, ny-2, nz-2), \
                'y': (nx-2, 0, nz-2), \
                'z': (nx-2, ny-2, 0) }[axis]
        getf0['e'] = GetFields(fields, strfs_e, pt0, pt1)

        pt0 = { 'x': (nx-1, 0, 0), \
                'y': (0, ny-1, 0), \
                'z': (0, 0, nz-1) }[axis]
        pt1 = { 'x': (nx-1, ny-2, nz-2), \
                'y': (nx-2, ny-1, nz-2), \
                'z': (nx-2, ny-2, nz-1) }[axis]
        getf1['e'] = GetFields(fields, strfs_e, pt0, pt1)

        pt0 = { 'x': (0, 1, 1), \
                'y': (1, 0, 1), \
                'z': (1, 1, 0) }[axis]
        pt1 = { 'x': (0, ny-1, nz-1), \
                'y': (nx-1, 0, nz-1), \
                'z': (nx-1, ny-1, 0) }[axis]
        getf0['h'] = GetFields(fields, strfs_h, pt0, pt1)

        pt0 = { 'x': (nx-1, 1, 1), \
                'y': (1, ny-1, 1), \
                'z': (1, 1, nz-1) }[axis]
        pt1 = (nx-1, ny-1, nz-1)
        getf1['h'] = GetFields(fields, strfs_h, pt0, pt1)

        for getf in getf0.values() + getf1.values():
            getf.get_event().wait()

        for eh in ['e', 'h']:
            norm = np.linalg.norm( \
                    getf0[eh].get_fields() - getf1[eh].get_fields() )
            self.assertEqual(norm, 0, '%g, %s, %s' % (norm, self.args, eh))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
Пример #5
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
Пример #6
0
#else: 
#    getf = GetFields(fields, 'ez', (0, 0, 0), (0, 0, 0))


if is_master:
    print 'ns', fields.ns
    print 'nbytes (MB)', nx*ny*nz * 9 * 4. / (1024**2)

    from datetime import datetime
    from time import time, sleep
    t0 = datetime.now()
    t00 = time()

# main loop
for tstep in xrange(1, tmax+1):
    fields.update_e()
    exch.update_e()

    fields.update_h()
    exch.update_h()

    if tstep % 10 == 0 and is_plot:
        getf.get_event().wait()
        np.save('rank%d_%d' % (rank, tstep), getf.get_fields())

        if is_master:
            print('[%s] %d/%d (%d %%)\r' % (datetime.now() - t0, tstep, tmax, float(tstep)/tmax*100)),
            sys.stdout.flush()

            for i in range(size):
                load_fail = True
Пример #7
0
#else:
#    getf = GetFields(fields, 'ez', (0, 0, 0), (0, 0, 0))

if is_master:
    print 'ns', fields.ns
    print 'nbytes (MB)', nx * ny * nz * 9 * 4. / (1024**2)

    from datetime import datetime
    from time import time, sleep
    t0 = datetime.now()
    t00 = time()

# main loop
for tstep in xrange(1, tmax + 1):
    fields.update_e()
    exch.update_e()

    fields.update_h()
    exch.update_h()

    if tstep % 10 == 0 and is_plot:
        getf.get_event().wait()
        np.save('rank%d_%d' % (rank, tstep), getf.get_fields())

        if is_master:
            print(
                '[%s] %d/%d (%d %%)\r' %
                (datetime.now() - t0, tstep, tmax, float(tstep) / tmax * 100)),
            sys.stdout.flush()
Пример #8
0
# Plot
import matplotlib.pyplot as plt
plt.ion()
imag = plt.imshow(output.get_fields().T,
                  cmap=plt.cm.hot,
                  origin='lower',
                  vmin=0,
                  vmax=0.05)
plt.colorbar()

# Main loop
from datetime import datetime
t0 = datetime.now()

for tstep in xrange(1, tmax + 1):
    fdtd.update_e()
    src.update(tstep)
    pbc.update_e()

    fdtd.update_h()
    pbc.update_h()

    if tstep % tgap == 0:
        print('[%s] %d/%d (%d %%)\r' %
              (datetime.now() - t0, tstep, tmax, float(tstep) / tmax * 100)),
        sys.stdout.flush()

        output.get_event().wait()
        f = output.get_fields()
        imag.set_array(f.T**2)
        #plt.savefig('./simple.png')
Пример #9
0
output = GetFields(fdtd, 'ex', (1, 0, 0), (1, ny-1, nz-1))


# Plot
import matplotlib.pyplot as plt
plt.ion()
imag = plt.imshow(output.get_fields().T, cmap=plt.cm.hot, origin='lower', vmin=0, vmax=0.05)
plt.colorbar()


# Main loop
from datetime import datetime
t0 = datetime.now()

for tstep in xrange(1, tmax+1):
	fdtd.update_e()
	src.update(tstep)
	pbc.update_e()

	fdtd.update_h()
	pbc.update_h()

	if tstep % tgap == 0:
		print('[%s] %d/%d (%d %%)\r' % (datetime.now() - t0, tstep, tmax, float(tstep)/tmax*100)),
		sys.stdout.flush()

		output.get_event().wait()
		f = output.get_fields()
		imag.set_array(f.T**2 )
		#plt.savefig('./simple.png')
		plt.draw()
Пример #10
0
    def runTest(self):
        ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float)
        core = Core(fields)

        # allocations
        ns = fields.ns
        dtype = fields.dtype
        strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]

        ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc)
        fields.set_eh_bufs(*ehs)

        ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype)
        if "e" in coeff_use:
            fields.set_ce_bufs(*ces)
        if "h" in coeff_use:
            fields.set_ch_bufs(*chs)

        tmpf = np.zeros(fields.ns_pitch, dtype=dtype)

        # update
        if ufunc == "e":
            for tstep in xrange(0, tmax):
                fields.update_e()
                common_update.update_e(ehs, ces)

            for strf, eh in zip(strf_list, ehs)[:3]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == "ez":
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1 :])
                    self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))

        elif ufunc == "h":
            for tstep in xrange(0, tmax):
                fields.update_h()
                common_update.update_h(ehs, chs)

            for strf, eh in zip(strf_list, ehs)[3:]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == "hz":
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))
Пример #11
0
    def runTest(self):
        ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, coeff_use,
                        precision_float)
        core = Core(fields)

        # allocations
        ns = fields.ns
        dtype = fields.dtype
        strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']

        ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc)
        fields.set_eh_bufs(*ehs)

        ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz,
                                                    dtype)
        if 'e' in coeff_use:
            fields.set_ce_bufs(*ces)
        if 'h' in coeff_use:
            fields.set_ch_bufs(*chs)

        tmpf = np.zeros(fields.ns_pitch, dtype=dtype)

        # update
        if ufunc == 'e':
            for tstep in xrange(0, tmax):
                fields.update_e()
                common_update.update_e(ehs, ces)

            for strf, eh in zip(strf_list, ehs)[:3]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'ez':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))

        elif ufunc == 'h':
            for tstep in xrange(0, tmax):
                fields.update_h()
                common_update.update_h(ehs, chs)

            for strf, eh in zip(strf_list, ehs)[3:]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'hz':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))
Пример #12
0
    def runTest(self):
        axis, nx, ny, nz, precision_float = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, '', precision_float)
        pbc = Pbc(fields, axis)

        # allocations
        ehs = common_update.generate_random_ehs(nx, ny, nz, fields.dtype)
        fields.set_eh_bufs(*ehs)

        # update
        fields.update_e()
        fields.update_h()

        # verify
        getf0, getf1 = {}, {}
        strfs_e = {
            'x': ['ey', 'ez'],
            'y': ['ex', 'ez'],
            'z': ['ex', 'ey']
        }[axis]
        strfs_h = {
            'x': ['hy', 'hz'],
            'y': ['hx', 'hz'],
            'z': ['hx', 'hy']
        }[axis]

        pt0 = (0, 0, 0)
        pt1 = { 'x': (0, ny-2, nz-2), \
                'y': (nx-2, 0, nz-2), \
                'z': (nx-2, ny-2, 0) }[axis]
        getf0['e'] = GetFields(fields, strfs_e, pt0, pt1)

        pt0 = { 'x': (nx-1, 0, 0), \
                'y': (0, ny-1, 0), \
                'z': (0, 0, nz-1) }[axis]
        pt1 = { 'x': (nx-1, ny-2, nz-2), \
                'y': (nx-2, ny-1, nz-2), \
                'z': (nx-2, ny-2, nz-1) }[axis]
        getf1['e'] = GetFields(fields, strfs_e, pt0, pt1)

        pt0 = { 'x': (0, 1, 1), \
                'y': (1, 0, 1), \
                'z': (1, 1, 0) }[axis]
        pt1 = { 'x': (0, ny-1, nz-1), \
                'y': (nx-1, 0, nz-1), \
                'z': (nx-1, ny-1, 0) }[axis]
        getf0['h'] = GetFields(fields, strfs_h, pt0, pt1)

        pt0 = { 'x': (nx-1, 1, 1), \
                'y': (1, ny-1, 1), \
                'z': (1, 1, nz-1) }[axis]
        pt1 = (nx - 1, ny - 1, nz - 1)
        getf1['h'] = GetFields(fields, strfs_h, pt0, pt1)

        for getf in getf0.values() + getf1.values():
            getf.get_event().wait()

        for eh in ['e', 'h']:
            norm = np.linalg.norm( \
                    getf0[eh].get_fields() - getf1[eh].get_fields() )
            self.assertEqual(norm, 0, '%g, %s, %s' % (norm, self.args, eh))