Пример #1
0
def DenseNet(blocks,
             include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             classifier_activation='softmax'):
    """Instantiates the DenseNet architecture.

  Reference:
  - [Densely Connected Convolutional Networks](
      https://arxiv.org/abs/1608.06993) (CVPR 2017)

  This function returns a Keras image classification model,
  optionally loaded with weights pre-trained on ImageNet.

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: each Keras Application expects a specific kind of input preprocessing.
  For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your
  inputs before passing them to the model.
  `densenet.preprocess_input` will scale pixels between 0 and 1 and then
  will normalize each channel with respect to the ImageNet dataset statistics.

  Args:
    blocks: numbers of building blocks for the four dense layers.
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)` (with `'channels_last'` data format)
      or `(3, 224, 224)` (with `'channels_first'` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 32.
      E.g. `(200, 200, 3)` would be one valid value.
    pooling: optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.

  Returns:
    A `keras.Model` instance.
  """
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(axis=bn_axis,
                                  epsilon=1.001e-5,
                                  name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)

    x = dense_block(x, blocks[0], name='conv2')
    x = transition_block(x, 0.5, name='pool2')
    x = dense_block(x, blocks[1], name='conv3')
    x = transition_block(x, 0.5, name='pool3')
    x = dense_block(x, blocks[2], name='conv4')
    x = transition_block(x, 0.5, name='pool4')
    x = dense_block(x, blocks[3], name='conv5')

    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.Activation('relu', name='relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)

        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    if blocks == [6, 12, 24, 16]:
        model = training.Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = training.Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = training.Model(inputs, x, name='densenet201')
    else:
        model = training.Model(inputs, x, name='densenet')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            if blocks == [6, 12, 24, 16]:
                weights_path = data_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET121_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='9d60b8095a5708f2dcce2bca79d332c7')
            elif blocks == [6, 12, 32, 32]:
                weights_path = data_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET169_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='d699b8f76981ab1b30698df4c175e90b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = data_utils.get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET201_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
        else:
            if blocks == [6, 12, 24, 16]:
                weights_path = data_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET121_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='30ee3e1110167f948a6b9946edeeb738')
            elif blocks == [6, 12, 32, 32]:
                weights_path = data_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET169_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='b8c4d4c20dd625c148057b9ff1c1176b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = data_utils.get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET201_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='c13680b51ded0fb44dff2d8f86ac8bb1')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #2
0
def NASNet(input_shape=None,
           penultimate_filters=4032,
           num_blocks=6,
           stem_block_filters=96,
           skip_reduction=True,
           filter_multiplier=2,
           include_top=True,
           weights='imagenet',
           input_tensor=None,
           pooling=None,
           classes=1000,
           default_size=None,
           classifier_activation='softmax'):
  """Instantiates a NASNet model.

  Reference:
  - [Learning Transferable Architectures for Scalable Image Recognition](
      https://arxiv.org/abs/1707.07012) (CVPR 2018)

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: each Keras Application expects a specific kind of input preprocessing.
  For NasNet, call `tf.keras.applications.nasnet.preprocess_input`
  on your inputs before passing them to the model.
  `nasnet.preprocess_input` will scale input pixels between -1 and 1.

  Args:
    input_shape: Optional shape tuple, the input shape
      is by default `(331, 331, 3)` for NASNetLarge and
      `(224, 224, 3)` for NASNetMobile.
      It should have exactly 3 input channels,
      and width and height should be no smaller than 32.
      E.g. `(224, 224, 3)` would be one valid value.
    penultimate_filters: Number of filters in the penultimate layer.
      NASNet models use the notation `NASNet (N @ P)`, where:
          -   N is the number of blocks
          -   P is the number of penultimate filters
    num_blocks: Number of repeated blocks of the NASNet model.
      NASNet models use the notation `NASNet (N @ P)`, where:
          -   N is the number of blocks
          -   P is the number of penultimate filters
    stem_block_filters: Number of filters in the initial stem block
    skip_reduction: Whether to skip the reduction step at the tail
      end of the network.
    filter_multiplier: Controls the width of the network.
      - If `filter_multiplier` < 1.0, proportionally decreases the number
          of filters in each layer.
      - If `filter_multiplier` > 1.0, proportionally increases the number
          of filters in each layer.
      - If `filter_multiplier` = 1, default number of filters from the
           paper are used at each layer.
    include_top: Whether to include the fully-connected
      layer at the top of the network.
    weights: `None` (random initialization) or
        `imagenet` (ImageNet weights)
    input_tensor: Optional Keras tensor (i.e. output of
      `layers.Input()`)
      to use as image input for the model.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model
          will be the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a
          2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: Optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    default_size: Specifies the default image size of the model
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.

  Returns:
    A `keras.Model` instance.
  """
  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
                     'as true, `classes` should be 1000')

  if (isinstance(input_shape, tuple) and None in input_shape and
      weights == 'imagenet'):
    raise ValueError('When specifying the input shape of a NASNet'
                     ' and loading `ImageNet` weights, '
                     'the input_shape argument must be static '
                     '(no None entries). Got: `input_shape=' +
                     str(input_shape) + '`.')

  if default_size is None:
    default_size = 331

  # Determine proper input shape and default size.
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=True,
      weights=weights)

  if backend.image_data_format() != 'channels_last':
    logging.warning('The NASNet family of models is only available '
                    'for the input data format "channels_last" '
                    '(width, height, channels). '
                    'However your settings specify the default '
                    'data format "channels_first" (channels, width, height).'
                    ' You should set `image_data_format="channels_last"` '
                    'in your Keras config located at ~/.keras/keras.json. '
                    'The model being returned right now will expect inputs '
                    'to follow the "channels_last" data format.')
    backend.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  if penultimate_filters % (24 * (filter_multiplier**2)) != 0:
    raise ValueError(
        'For NASNet-A models, the `penultimate_filters` must be a multiple '
        'of 24 * (`filter_multiplier` ** 2). Current value: %d' %
        penultimate_filters)

  channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
  filters = penultimate_filters // 24

  x = layers.Conv2D(
      stem_block_filters, (3, 3),
      strides=(2, 2),
      padding='valid',
      use_bias=False,
      name='stem_conv1',
      kernel_initializer='he_normal')(
          img_input)

  x = layers.BatchNormalization(
      axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='stem_bn1')(
          x)

  p = None
  x, p = _reduction_a_cell(
      x, p, filters // (filter_multiplier**2), block_id='stem_1')
  x, p = _reduction_a_cell(
      x, p, filters // filter_multiplier, block_id='stem_2')

  for i in range(num_blocks):
    x, p = _normal_a_cell(x, p, filters, block_id='%d' % (i))

  x, p0 = _reduction_a_cell(
      x, p, filters * filter_multiplier, block_id='reduce_%d' % (num_blocks))

  p = p0 if not skip_reduction else p

  for i in range(num_blocks):
    x, p = _normal_a_cell(
        x, p, filters * filter_multiplier, block_id='%d' % (num_blocks + i + 1))

  x, p0 = _reduction_a_cell(
      x,
      p,
      filters * filter_multiplier**2,
      block_id='reduce_%d' % (2 * num_blocks))

  p = p0 if not skip_reduction else p

  for i in range(num_blocks):
    x, p = _normal_a_cell(
        x,
        p,
        filters * filter_multiplier**2,
        block_id='%d' % (2 * num_blocks + i + 1))

  x = layers.Activation('relu')(x)

  if include_top:
    x = layers.GlobalAveragePooling2D()(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(classes, activation=classifier_activation,
                     name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  model = training.Model(inputs, x, name='NASNet')

  # Load weights.
  if weights == 'imagenet':
    if default_size == 224:  # mobile version
      if include_top:
        weights_path = data_utils.get_file(
            'nasnet_mobile.h5',
            NASNET_MOBILE_WEIGHT_PATH,
            cache_subdir='models',
            file_hash='020fb642bf7360b370c678b08e0adf61')
      else:
        weights_path = data_utils.get_file(
            'nasnet_mobile_no_top.h5',
            NASNET_MOBILE_WEIGHT_PATH_NO_TOP,
            cache_subdir='models',
            file_hash='1ed92395b5b598bdda52abe5c0dbfd63')
      model.load_weights(weights_path)
    elif default_size == 331:  # large version
      if include_top:
        weights_path = data_utils.get_file(
            'nasnet_large.h5',
            NASNET_LARGE_WEIGHT_PATH,
            cache_subdir='models',
            file_hash='11577c9a518f0070763c2b964a382f17')
      else:
        weights_path = data_utils.get_file(
            'nasnet_large_no_top.h5',
            NASNET_LARGE_WEIGHT_PATH_NO_TOP,
            cache_subdir='models',
            file_hash='d81d89dc07e6e56530c4e77faddd61b5')
      model.load_weights(weights_path)
    else:
      raise ValueError('ImageNet weights can only be loaded with NASNetLarge'
                       ' or NASNetMobile')
  elif weights is not None:
    model.load_weights(weights)

  if old_data_format:
    backend.set_image_data_format(old_data_format)

  return model
Пример #3
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000,
                      classifier_activation='softmax',
                      **kwargs):
    """Instantiates the Inception-ResNet v2 architecture.

  Reference:
  - [Inception-v4, Inception-ResNet and the Impact of
     Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
    (AAAI 2017)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For InceptionResNetV2, call
  `tf.keras.applications.inception_resnet_v2.preprocess_input`
  on your inputs before passing them to the model.

  Arguments:
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is `False` (otherwise the input shape
      has to be `(299, 299, 3)` (with `'channels_last'` data format)
      or `(3, 299, 299)` (with `'channels_first'` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 75.
      E.g. `(150, 150, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `'avg'` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `'max'` means that global max pooling will be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is `True`, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=75,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = layers.MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = layers.MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = layers.AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3
    x = layers.Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name='inception_resnet_v2')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            fname = ('inception_resnet_v2_weights_'
                     'tf_dim_ordering_tf_kernels_notop.h5')
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #4
0
def ConvNeXt(
    depths,
    projection_dims,
    drop_path_rate=0.0,
    layer_scale_init_value=1e-6,
    default_size=224,
    model_name="convnext",
    include_preprocessing=True,
    include_top=True,
    weights=None,
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
):
    """Instantiates ConvNeXt architecture given specific configuration.

    Args:
      depths: An iterable containing depths for each individual stages.
      projection_dims: An iterable containing output number of channels of
      each individual stages.
      drop_path_rate: Stochastic depth probability. If 0.0, then stochastic
        depth won't be used.
      layer_scale_init_value: Layer scale coefficient. If 0.0, layer scaling
        won't be used.
      default_size: Default input image size.
      model_name: An optional name for the model.
      include_preprocessing: boolean denoting whther to include preprocessing in
        the model. When `weights="imagenet"` this should be always set to True.
        But for other models (e.g., randomly initialized) users should set it
        to False and apply preprocessing to data accordingly.
      include_top: Boolean denoting whether to include classification head to
        the model.
      weights: one of `None` (random initialization), `"imagenet"` (pre-training
        on ImageNet-1k), or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to
        use as image input for the model.
      input_shape: optional shape tuple, only to be specified if `include_top`
        is False. It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction when `include_top`
        is `False`.
        - `None` means that the output of the model will be the 4D tensor output
          of the last convolutional layer.
        - `avg` means that global average pooling will be applied to the output
          of the last convolutional layer, and thus the output of the model will
          be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images into, only to be
        specified if `include_top` is True, and if no `weights` argument is
        specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.

    Returns:
      A `keras.Model` instance.

    Raises:
        ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
        ValueError: if `classifier_activation` is not `softmax`, or `None`
          when using a pretrained top layer.
        ValueError: if `include_top` is True but `num_classes` is not 1000
          when using ImageNet.
    """
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `imagenet` "
            "(pre-training on ImageNet), "
            "or the path to the weights file to be loaded."
        )

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            "If using `weights` as `'imagenet'` with `include_top`"
            " as true, `classes` should be 1000"
        )

    # Determine proper input shape.
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if input_tensor is not None:
        inputs = utils.layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    x = inputs
    if include_preprocessing:
        channel_axis = (
            3 if backend.image_data_format() == "channels_last" else 1
        )
        num_channels = input_shape[channel_axis - 1]
        if num_channels == 3:
            x = PreStem(name=model_name)(x)

    # Stem block.
    stem = sequential.Sequential(
        [
            layers.Conv2D(
                projection_dims[0],
                kernel_size=4,
                strides=4,
                name=model_name + "_stem_conv",
            ),
            layers.LayerNormalization(
                epsilon=1e-6, name=model_name + "_stem_layernorm"
            ),
        ],
        name=model_name + "_stem",
    )

    # Downsampling blocks.
    downsample_layers = []
    downsample_layers.append(stem)

    num_downsample_layers = 3
    for i in range(num_downsample_layers):
        downsample_layer = sequential.Sequential(
            [
                layers.LayerNormalization(
                    epsilon=1e-6,
                    name=model_name + "_downsampling_layernorm_" + str(i),
                ),
                layers.Conv2D(
                    projection_dims[i + 1],
                    kernel_size=2,
                    strides=2,
                    name=model_name + "_downsampling_conv_" + str(i),
                ),
            ],
            name=model_name + "_downsampling_block_" + str(i),
        )
        downsample_layers.append(downsample_layer)

    # Stochastic depth schedule.
    # This is referred from the original ConvNeXt codebase:
    # https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py#L86
    depth_drop_rates = [
        float(x) for x in np.linspace(0.0, drop_path_rate, sum(depths))
    ]

    # First apply downsampling blocks and then apply ConvNeXt stages.
    cur = 0

    num_convnext_blocks = 4
    for i in range(num_convnext_blocks):
        x = downsample_layers[i](x)
        for j in range(depths[i]):
            x = ConvNeXtBlock(
                projection_dim=projection_dims[i],
                drop_path_rate=depth_drop_rates[cur + j],
                layer_scale_init_value=layer_scale_init_value,
                name=model_name + f"_stage_{i}_block_{j}",
            )(x)
        cur += depths[i]

    if include_top:
        x = Head(num_classes=classes, name=model_name)(x)
        imagenet_utils.validate_activation(classifier_activation, weights)

    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)
        x = layers.LayerNormalization(epsilon=1e-6)(x)

    model = training_lib.Model(inputs=inputs, outputs=x, name=model_name)

    # Load weights.
    if weights == "imagenet":
        if include_top:
            file_suffix = ".h5"
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_suffix = "_notop.h5"
            file_hash = WEIGHTS_HASHES[model_name][1]
        file_name = model_name + file_suffix
        weights_path = utils.data_utils.get_file(
            file_name,
            BASE_WEIGHTS_PATH + file_name,
            cache_subdir="models",
            file_hash=file_hash,
        )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #5
0
def Xception(
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
):
    """Instantiates the Xception architecture.

    Reference:
    - [Xception: Deep Learning with Depthwise Separable Convolutions](
        https://arxiv.org/abs/1610.02357) (CVPR 2017)

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    The default input image size for this model is 299x299.

    Note: each Keras Application expects a specific kind of input preprocessing.
    For Xception, call `tf.keras.applications.xception.preprocess_input` on your
    inputs before passing them to the model.
    `xception.preprocess_input` will scale input pixels between -1 and 1.

    Args:
      include_top: whether to include the fully-connected
        layer at the top of the network.
      weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(299, 299, 3)`.
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 71.
        E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True,
        and if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    """
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `imagenet` "
            "(pre-training on ImageNet), "
            "or the path to the weights file to be loaded."
        )

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            " as true, `classes` should be 1000"
        )

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=71,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == "channels_first" else -1

    x = layers.Conv2D(
        32, (3, 3), strides=(2, 2), use_bias=False, name="block1_conv1"
    )(img_input)
    x = layers.BatchNormalization(axis=channel_axis, name="block1_conv1_bn")(x)
    x = layers.Activation("relu", name="block1_conv1_act")(x)
    x = layers.Conv2D(64, (3, 3), use_bias=False, name="block1_conv2")(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block1_conv2_bn")(x)
    x = layers.Activation("relu", name="block1_conv2_act")(x)

    residual = layers.Conv2D(
        128, (1, 1), strides=(2, 2), padding="same", use_bias=False
    )(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.SeparableConv2D(
        128, (3, 3), padding="same", use_bias=False, name="block2_sepconv1"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv1_bn")(
        x
    )
    x = layers.Activation("relu", name="block2_sepconv2_act")(x)
    x = layers.SeparableConv2D(
        128, (3, 3), padding="same", use_bias=False, name="block2_sepconv2"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv2_bn")(
        x
    )

    x = layers.MaxPooling2D(
        (3, 3), strides=(2, 2), padding="same", name="block2_pool"
    )(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(
        256, (1, 1), strides=(2, 2), padding="same", use_bias=False
    )(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation("relu", name="block3_sepconv1_act")(x)
    x = layers.SeparableConv2D(
        256, (3, 3), padding="same", use_bias=False, name="block3_sepconv1"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv1_bn")(
        x
    )
    x = layers.Activation("relu", name="block3_sepconv2_act")(x)
    x = layers.SeparableConv2D(
        256, (3, 3), padding="same", use_bias=False, name="block3_sepconv2"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv2_bn")(
        x
    )

    x = layers.MaxPooling2D(
        (3, 3), strides=(2, 2), padding="same", name="block3_pool"
    )(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(
        728, (1, 1), strides=(2, 2), padding="same", use_bias=False
    )(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation("relu", name="block4_sepconv1_act")(x)
    x = layers.SeparableConv2D(
        728, (3, 3), padding="same", use_bias=False, name="block4_sepconv1"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv1_bn")(
        x
    )
    x = layers.Activation("relu", name="block4_sepconv2_act")(x)
    x = layers.SeparableConv2D(
        728, (3, 3), padding="same", use_bias=False, name="block4_sepconv2"
    )(x)
    x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv2_bn")(
        x
    )

    x = layers.MaxPooling2D(
        (3, 3), strides=(2, 2), padding="same", name="block4_pool"
    )(x)
    x = layers.add([x, residual])

    for i in range(8):
        residual = x
        prefix = "block" + str(i + 5)

        x = layers.Activation("relu", name=prefix + "_sepconv1_act")(x)
        x = layers.SeparableConv2D(
            728,
            (3, 3),
            padding="same",
            use_bias=False,
            name=prefix + "_sepconv1",
        )(x)
        x = layers.BatchNormalization(
            axis=channel_axis, name=prefix + "_sepconv1_bn"
        )(x)
        x = layers.Activation("relu", name=prefix + "_sepconv2_act")(x)
        x = layers.SeparableConv2D(
            728,
            (3, 3),
            padding="same",
            use_bias=False,
            name=prefix + "_sepconv2",
        )(x)
        x = layers.BatchNormalization(
            axis=channel_axis, name=prefix + "_sepconv2_bn"
        )(x)
        x = layers.Activation("relu", name=prefix + "_sepconv3_act")(x)
        x = layers.SeparableConv2D(
            728,
            (3, 3),
            padding="same",
            use_bias=False,
            name=prefix + "_sepconv3",
        )(x)
        x = layers.BatchNormalization(
            axis=channel_axis, name=prefix + "_sepconv3_bn"
        )(x)

        x = layers.add([x, residual])

    residual = layers.Conv2D(
        1024, (1, 1), strides=(2, 2), padding="same", use_bias=False
    )(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation("relu", name="block13_sepconv1_act")(x)
    x = layers.SeparableConv2D(
        728, (3, 3), padding="same", use_bias=False, name="block13_sepconv1"
    )(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name="block13_sepconv1_bn"
    )(x)
    x = layers.Activation("relu", name="block13_sepconv2_act")(x)
    x = layers.SeparableConv2D(
        1024, (3, 3), padding="same", use_bias=False, name="block13_sepconv2"
    )(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name="block13_sepconv2_bn"
    )(x)

    x = layers.MaxPooling2D(
        (3, 3), strides=(2, 2), padding="same", name="block13_pool"
    )(x)
    x = layers.add([x, residual])

    x = layers.SeparableConv2D(
        1536, (3, 3), padding="same", use_bias=False, name="block14_sepconv1"
    )(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name="block14_sepconv1_bn"
    )(x)
    x = layers.Activation("relu", name="block14_sepconv1_act")(x)

    x = layers.SeparableConv2D(
        2048, (3, 3), padding="same", use_bias=False, name="block14_sepconv2"
    )(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name="block14_sepconv2_bn"
    )(x)
    x = layers.Activation("relu", name="block14_sepconv2_act")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(
            classes, activation=classifier_activation, name="predictions"
        )(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name="xception")

    # Load weights.
    if weights == "imagenet":
        if include_top:
            weights_path = data_utils.get_file(
                "xception_weights_tf_dim_ordering_tf_kernels.h5",
                TF_WEIGHTS_PATH,
                cache_subdir="models",
                file_hash="0a58e3b7378bc2990ea3b43d5981f1f6",
            )
        else:
            weights_path = data_utils.get_file(
                "xception_weights_tf_dim_ordering_tf_kernels_notop.h5",
                TF_WEIGHTS_PATH_NO_TOP,
                cache_subdir="models",
                file_hash="b0042744bf5b25fce3cb969f33bebb97",
            )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #6
0
def EfficientNetV2(
    width_coefficient,
    depth_coefficient,
    default_size,
    dropout_rate=0.2,
    drop_connect_rate=0.2,
    depth_divisor=8,
    min_depth=8,
    bn_momentum=0.9,
    activation="swish",
    blocks_args="default",
    model_name="efficientnetv2",
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    include_preprocessing=True,
):
    """Instantiates the EfficientNetV2 architecture using given scaling coefficients.

  Args:
    width_coefficient: float, scaling coefficient for network width.
    depth_coefficient: float, scaling coefficient for network depth.
    default_size: integer, default input image size.
    dropout_rate: float, dropout rate before final classifier layer.
    drop_connect_rate: float, dropout rate at skip connections.
    depth_divisor: integer, a unit of network width.
    min_depth: integer, minimum number of filters.
    bn_momentum: float. Momentum parameter for Batch Normalization layers.
    activation: activation function.
    blocks_args: list of dicts, parameters to construct block modules.
    model_name: string, model name.
    include_top: whether to include the fully-connected layer at the top of the
      network.
    weights: one of `None` (random initialization), `"imagenet"` (pre-training
      on ImageNet), or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) or
      numpy array to use as image input for the model.
    input_shape: optional shape tuple, only to be specified if `include_top` is
      False. It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction when `include_top` is
      `False`. - `None` means that the output of the model will be the 4D tensor
      output of the last convolutional layer. - "avg" means that global average
      pooling will be applied to the output of the last convolutional layer, and
      thus the output of the model will be a 2D tensor. - `"max"` means that
      global max pooling will be applied.
    classes: optional number of classes to classify images into, only to be
      specified if `include_top` is True, and if no `weights` argument is
      specified.
    classifier_activation: A string or callable. The activation function to use
      on the `"top"` layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the `"top"` layer.
    include_preprocessing: Boolean, whether to include the preprocessing layer
      (`Rescaling`) at the bottom of the network. Defaults to `True`.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `"softmax"` or `None` when
      using a pretrained top layer.
  """

    if blocks_args == "default":
        blocks_args = DEFAULT_BLOCKS_ARGS[model_name]

    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError("The `weights` argument should be either "
                         "`None` (random initialization), `imagenet` "
                         "(pre-training on ImageNet), "
                         "or the path to the weights file to be loaded."
                         f"Received: weights={weights}")

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            "If using `weights` as `'imagenet'` with `include_top`"
            " as true, `classes` should be 1000"
            f"Received: classes={classes}")

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1

    x = img_input

    if include_preprocessing:
        # Apply original V1 preprocessing for Bx variants
        # if number of channels allows it
        num_channels = input_shape[bn_axis - 1]
        if model_name.split("-")[-1].startswith("b") and num_channels == 3:
            x = layers.Rescaling(scale=1. / 255)(x)
            x = layers.Normalization(
                mean=[0.485, 0.456, 0.406],
                variance=[0.229**2, 0.224**2, 0.225**2],
                axis=bn_axis,
            )(x)
        else:
            x = layers.Rescaling(scale=1. / 128.0, offset=-1)(x)

    # Build stem
    stem_filters = round_filters(
        filters=blocks_args[0]["input_filters"],
        width_coefficient=width_coefficient,
        min_depth=min_depth,
        depth_divisor=depth_divisor,
    )
    x = layers.Conv2D(
        filters=stem_filters,
        kernel_size=3,
        strides=2,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        padding="same",
        use_bias=False,
        name="stem_conv",
    )(x)
    x = layers.BatchNormalization(
        axis=bn_axis,
        momentum=bn_momentum,
        name="stem_bn",
    )(x)
    x = layers.Activation(activation, name="stem_activation")(x)

    # Build blocks
    blocks_args = copy.deepcopy(blocks_args)
    b = 0
    blocks = float(sum(args["num_repeat"] for args in blocks_args))

    for (i, args) in enumerate(blocks_args):
        assert args["num_repeat"] > 0

        # Update block input and output filters based on depth multiplier.
        args["input_filters"] = round_filters(
            filters=args["input_filters"],
            width_coefficient=width_coefficient,
            min_depth=min_depth,
            depth_divisor=depth_divisor)
        args["output_filters"] = round_filters(
            filters=args["output_filters"],
            width_coefficient=width_coefficient,
            min_depth=min_depth,
            depth_divisor=depth_divisor)

        # Determine which conv type to use:
        block = {0: MBConvBlock, 1: FusedMBConvBlock}[args.pop("conv_type")]
        repeats = round_repeats(repeats=args.pop("num_repeat"),
                                depth_coefficient=depth_coefficient)
        for j in range(repeats):
            # The first block needs to take care of stride and filter size increase.
            if j > 0:
                args["strides"] = 1
                args["input_filters"] = args["output_filters"]

            x = block(
                activation=activation,
                bn_momentum=bn_momentum,
                survival_probability=drop_connect_rate * b / blocks,
                name="block{}{}_".format(i + 1, chr(j + 97)),
                **args,
            )(x)
            b += 1

    # Build top
    top_filters = round_filters(filters=1280,
                                width_coefficient=width_coefficient,
                                min_depth=min_depth,
                                depth_divisor=depth_divisor)
    x = layers.Conv2D(
        filters=top_filters,
        kernel_size=1,
        strides=1,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        padding="same",
        data_format="channels_last",
        use_bias=False,
        name="top_conv",
    )(x)
    x = layers.BatchNormalization(
        axis=bn_axis,
        momentum=bn_momentum,
        name="top_bn",
    )(x)
    x = layers.Activation(activation=activation, name="top_activation")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        if dropout_rate > 0:
            x = layers.Dropout(dropout_rate, name="top_dropout")(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         kernel_initializer=DENSE_KERNEL_INITIALIZER,
                         bias_initializer=tf.constant_initializer(0),
                         name="predictions")(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D(name="max_pool")(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if weights == "imagenet":
        if include_top:
            file_suffix = ".h5"
            file_hash = WEIGHTS_HASHES[model_name[-2:]][0]
        else:
            file_suffix = "_notop.h5"
            file_hash = WEIGHTS_HASHES[model_name[-2:]][1]
        file_name = model_name + file_suffix
        weights_path = data_utils.get_file(file_name,
                                           BASE_WEIGHTS_PATH + file_name,
                                           cache_subdir="models",
                                           file_hash=file_hash)
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #7
0
def MobileNet(
    input_shape=None,
    alpha=1.0,
    depth_multiplier=1,
    dropout=1e-3,
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    **kwargs,
):
    """Instantiates the MobileNet architecture.

    Reference:
    - [MobileNets: Efficient Convolutional Neural Networks
       for Mobile Vision Applications](
        https://arxiv.org/abs/1704.04861)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input`
    on your inputs before passing them to the model.
    `mobilenet.preprocess_input` will scale input pixels between -1 and 1.

    Args:
      input_shape: Optional shape tuple, only to be specified if `include_top`
        is False (otherwise the input shape has to be `(224, 224, 3)` (with
        `channels_last` data format) or (3, 224, 224) (with `channels_first`
        data format). It should have exactly 3 inputs channels, and width and
        height should be no smaller than 32. E.g. `(200, 200, 3)` would be one
        valid value. Default to `None`.
        `input_shape` will be ignored if the `input_tensor` is provided.
      alpha: Controls the width of the network. This is known as the width
        multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally
        decreases the number of filters in each layer. - If `alpha` > 1.0,
        proportionally increases the number of filters in each layer. - If
        `alpha` = 1, default number of filters from the paper are used at each
        layer. Default to 1.0.
      depth_multiplier: Depth multiplier for depthwise convolution. This is
        called the resolution multiplier in the MobileNet paper. Default to 1.0.
      dropout: Dropout rate. Default to 0.001.
      include_top: Boolean, whether to include the fully-connected layer at the
        top of the network. Default to `True`.
      weights: One of `None` (random initialization), 'imagenet' (pre-training
        on ImageNet), or the path to the weights file to be loaded. Default to
        `imagenet`.
      input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to
        use as image input for the model. `input_tensor` is useful for sharing
        inputs between multiple different networks. Default to None.
      pooling: Optional pooling mode for feature extraction when `include_top`
        is `False`.
        - `None` (default) means that the output of the model will be
            the 4D tensor output of the last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: Optional number of classes to classify images into, only to be
        specified if `include_top` is True, and if no `weights` argument is
        specified. Defaults to 1000.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.
    Returns:
      A `keras.Model` instance.
    """
    global layers
    if "layers" in kwargs:
        layers = kwargs.pop("layers")
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError(f"Unknown argument(s): {(kwargs,)}")
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `imagenet` "
            "(pre-training on ImageNet), "
            "or the path to the weights file to be loaded.  "
            f"Received weights={weights}"
        )

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            "as true, `classes` should be 1000.  "
            f"Received classes={classes}"
        )

    # Determine proper input shape and default size.
    if input_shape is None:
        default_size = 224
    else:
        if backend.image_data_format() == "channels_first":
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if backend.image_data_format() == "channels_last":
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == "imagenet":
        if depth_multiplier != 1:
            raise ValueError(
                "If imagenet weights are being loaded, "
                "depth multiplier must be 1.  "
                f"Received depth_multiplier={depth_multiplier}"
            )

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError(
                "If imagenet weights are being loaded, "
                "alpha can be one of"
                "`0.25`, `0.50`, `0.75` or `1.0` only.  "
                f"Received alpha={alpha}"
            )

        if rows != cols or rows not in [128, 160, 192, 224]:
            rows = 224
            logging.warning(
                "`input_shape` is undefined or non-square, "
                "or `rows` is not in [128, 160, 192, 224]. "
                "Weights for input shape (224, 224) will be "
                "loaded as the default."
            )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(
        x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2
    )
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(
        x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4
    )
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(
        x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6
    )
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(
        x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12
    )
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        x = layers.GlobalAveragePooling2D(keepdims=True)(x)
        x = layers.Dropout(dropout, name="dropout")(x)
        x = layers.Conv2D(classes, (1, 1), padding="same", name="conv_preds")(x)
        x = layers.Reshape((classes,), name="reshape_2")(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(
            activation=classifier_activation, name="predictions"
        )(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name="mobilenet_%0.2f_%s" % (alpha, rows))

    # Load weights.
    if weights == "imagenet":
        if alpha == 1.0:
            alpha_text = "1_0"
        elif alpha == 0.75:
            alpha_text = "7_5"
        elif alpha == 0.50:
            alpha_text = "5_0"
        else:
            alpha_text = "2_5"

        if include_top:
            model_name = "mobilenet_%s_%d_tf.h5" % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(
                model_name, weight_path, cache_subdir="models"
            )
        else:
            model_name = "mobilenet_%s_%d_tf_no_top.h5" % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(
                model_name, weight_path, cache_subdir="models"
            )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #8
0
def EfficientNet(
    width_coefficient,
    depth_coefficient,
    default_size,
    dropout_rate=0.2,
    drop_connect_rate=0.2,
    depth_divisor=8,
    activation='swish',
    blocks_args='default',
    model_name='efficientnet',
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the EfficientNet architecture using given scaling coefficients.

  Args:
    width_coefficient: float, scaling coefficient for network width.
    depth_coefficient: float, scaling coefficient for network depth.
    default_size: integer, default input image size.
    dropout_rate: float, dropout rate before final classifier layer.
    drop_connect_rate: float, dropout rate at skip connections.
    depth_divisor: integer, a unit of network width.
    activation: activation function.
    blocks_args: list of dicts, parameters to construct block modules.
    model_name: string, model name.
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
          'imagenet' (pre-training on ImageNet),
          or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
        if `include_top` is False.
        It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
    classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
  if blocks_args == 'default':
    blocks_args = DEFAULT_BLOCKS_ARGS

  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  def round_filters(filters, divisor=depth_divisor):
    """Round number of filters based on depth multiplier."""
    filters *= width_coefficient
    new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_filters < 0.9 * filters:
      new_filters += divisor
    return int(new_filters)

  def round_repeats(repeats):
    """Round number of repeats based on depth multiplier."""
    return int(math.ceil(depth_coefficient * repeats))

  # Build stem
  x = img_input
  x = layers.Rescaling(1. / 255.)(x)
  x = layers.Normalization(axis=bn_axis)(x)

  x = layers.ZeroPadding2D(
      padding=imagenet_utils.correct_pad(x, 3),
      name='stem_conv_pad')(x)
  x = layers.Conv2D(
      round_filters(32),
      3,
      strides=2,
      padding='valid',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='stem_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
  x = layers.Activation(activation, name='stem_activation')(x)

  # Build blocks
  blocks_args = copy.deepcopy(blocks_args)

  b = 0
  blocks = float(sum(round_repeats(args['repeats']) for args in blocks_args))
  for (i, args) in enumerate(blocks_args):
    assert args['repeats'] > 0
    # Update block input and output filters based on depth multiplier.
    args['filters_in'] = round_filters(args['filters_in'])
    args['filters_out'] = round_filters(args['filters_out'])

    for j in range(round_repeats(args.pop('repeats'))):
      # The first block needs to take care of stride and filter size increase.
      if j > 0:
        args['strides'] = 1
        args['filters_in'] = args['filters_out']
      x = block(
          x,
          activation,
          drop_connect_rate * b / blocks,
          name='block{}{}_'.format(i + 1, chr(j + 97)),
          **args)
      b += 1

  # Build top
  x = layers.Conv2D(
      round_filters(1280),
      1,
      padding='same',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='top_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x)
  x = layers.Activation(activation, name='top_activation')(x)
  if include_top:
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    if dropout_rate > 0:
      x = layers.Dropout(dropout_rate, name='top_dropout')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(
        classes,
        activation=classifier_activation,
        kernel_initializer=DENSE_KERNEL_INITIALIZER,
        name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D(name='max_pool')(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name=model_name)

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      file_suffix = '.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][0]
    else:
      file_suffix = '_notop.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][1]
    file_name = model_name + file_suffix
    weights_path = data_utils.get_file(
        file_name,
        BASE_WEIGHTS_PATH + file_name,
        cache_subdir='models',
        file_hash=file_hash)
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)
  return model
Пример #9
0
def MobileNetV3(
    stack_fn,
    last_point_ch,
    input_shape=None,
    alpha=1.0,
    model_type="large",
    minimalistic=False,
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    classes=1000,
    pooling=None,
    dropout_rate=0.2,
    classifier_activation="softmax",
    include_preprocessing=True,
):
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError("The `weights` argument should be either "
                         "`None` (random initialization), `imagenet` "
                         "(pre-training on ImageNet), "
                         "or the path to the weights file to be loaded.  "
                         f"Received weights={weights}")

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            "as true, `classes` should be 1000.  "
            f"Received classes={classes}")

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError(
                    "input_tensor: ",
                    input_tensor,
                    "is not type input_tensor.  "
                    f"Received type(input_tensor)={type(input_tensor)}",
                )
        if is_input_t_tensor:
            if backend.image_data_format() == "channels_first":
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        "When backend.image_data_format()=channels_first, "
                        "input_shape[1] must equal "
                        "backend.int_shape(input_tensor)[1].  Received "
                        f"input_shape={input_shape}, "
                        "backend.int_shape(input_tensor)="
                        f"{backend.int_shape(input_tensor)}")
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        "input_shape[1] must equal "
                        "backend.int_shape(input_tensor)[2].  Received "
                        f"input_shape={input_shape}, "
                        "backend.int_shape(input_tensor)="
                        f"{backend.int_shape(input_tensor)}")
        else:
            raise ValueError(
                "input_tensor specified: ",
                input_tensor,
                "is not a keras tensor",
            )

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError(
                "input_tensor: ",
                input_tensor,
                "is type: ",
                type(input_tensor),
                "which is not a valid type",
            )

        if backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == "channels_first":
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
                input_shape = (3, cols, rows)
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]
                input_shape = (cols, rows, 3)
    # If input_shape is None and input_tensor is None using standard shape
    if input_shape is None and input_tensor is None:
        input_shape = (None, None, 3)

    if backend.image_data_format() == "channels_last":
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]
    if rows and cols and (rows < 32 or cols < 32):
        raise ValueError(
            "Input size must be at least 32x32; Received `input_shape="
            f"{input_shape}`")
    if weights == "imagenet":
        if (not minimalistic and alpha not in [0.75, 1.0]
                or minimalistic and alpha != 1.0):
            raise ValueError(
                "If imagenet weights are being loaded, "
                "alpha can be one of `0.75`, `1.0` for non minimalistic "
                "or `1.0` for minimalistic only.")

        if rows != cols or rows != 224:
            logging.warning("`input_shape` is undefined or non-square, "
                            "or `rows` is not 224. "
                            "Weights for input shape (224, 224) will be "
                            "loaded as the default.")

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == "channels_first" else -1

    if minimalistic:
        kernel = 3
        activation = relu
        se_ratio = None
    else:
        kernel = 5
        activation = hard_swish
        se_ratio = 0.25

    x = img_input
    if include_preprocessing:
        x = layers.Rescaling(scale=1.0 / 127.5, offset=-1.0)(x)
    x = layers.Conv2D(
        16,
        kernel_size=3,
        strides=(2, 2),
        padding="same",
        use_bias=False,
        name="Conv",
    )(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="Conv/BatchNorm")(x)
    x = activation(x)

    x = stack_fn(x, kernel, activation, se_ratio)

    last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6)

    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_point_ch = _depth(last_point_ch * alpha)
    x = layers.Conv2D(
        last_conv_ch,
        kernel_size=1,
        padding="same",
        use_bias=False,
        name="Conv_1",
    )(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="Conv_1/BatchNorm")(x)
    x = activation(x)
    if include_top:
        x = layers.GlobalAveragePooling2D(keepdims=True)(x)
        x = layers.Conv2D(
            last_point_ch,
            kernel_size=1,
            padding="same",
            use_bias=True,
            name="Conv_2",
        )(x)
        x = activation(x)

        if dropout_rate > 0:
            x = layers.Dropout(dropout_rate)(x)
        x = layers.Conv2D(classes,
                          kernel_size=1,
                          padding="same",
                          name="Logits")(x)
        x = layers.Flatten()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(activation=classifier_activation,
                              name="Predictions")(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D(name="max_pool")(x)
    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name="MobilenetV3" + model_type)

    # Load weights.
    if weights == "imagenet":
        model_name = "{}{}_224_{}_float".format(
            model_type, "_minimalistic" if minimalistic else "", str(alpha))
        if include_top:
            file_name = "weights_mobilenet_v3_" + model_name + ".h5"
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = "weights_mobilenet_v3_" + model_name + "_no_top_v2.h5"
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(
            file_name,
            BASE_WEIGHT_PATH + file_name,
            cache_subdir="models",
            file_hash=file_hash,
        )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #10
0
def InceptionResNetV2(include_top=True,
                      weights="imagenet",
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000,
                      classifier_activation="softmax",
                      **kwargs):
    """Instantiates the Inception-ResNet v2 architecture.

    Reference:
    - [Inception-v4, Inception-ResNet and the Impact of
       Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
      (AAAI 2017)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For InceptionResNetV2, call
    `tf.keras.applications.inception_resnet_v2.preprocess_input`
    on your inputs before passing them to the model.
    `inception_resnet_v2.preprocess_input`
    will scale input pixels between -1 and 1.

    Args:
      include_top: whether to include the fully-connected
        layer at the top of the network.
      weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is `False` (otherwise the input shape
        has to be `(299, 299, 3)` (with `'channels_last'` data format)
        or `(3, 299, 299)` (with `'channels_first'` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 75.
        E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the last convolutional block.
        - `'avg'` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `'max'` means that global max pooling will be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is `True`, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """
    global layers
    if "layers" in kwargs:
        layers = kwargs.pop("layers")
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError("Unknown argument(s): %s" % (kwargs, ))
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError("The `weights` argument should be either "
                         "`None` (random initialization), `imagenet` "
                         "(pre-training on ImageNet), "
                         "or the path to the weights file to be loaded.")

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            " as true, `classes` should be 1000")

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=75,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding="valid")
    x = conv2d_bn(x, 32, 3, padding="valid")
    x = conv2d_bn(x, 64, 3)
    x = layers.MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding="valid")
    x = conv2d_bn(x, 192, 3, padding="valid")
    x = layers.MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = layers.AveragePooling2D(3, strides=1, padding="same")(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if backend.image_data_format() == "channels_first" else 3
    x = layers.Concatenate(axis=channel_axis, name="mixed_5b")(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type="block35",
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding="valid")
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding="valid")
    branch_pool = layers.MaxPooling2D(3, strides=2, padding="valid")(x)
    branches = [branch_0, branch_1, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name="mixed_6a")(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type="block17",
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding="valid")
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding="valid")
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding="valid")
    branch_pool = layers.MaxPooling2D(3, strides=2, padding="valid")(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name="mixed_7a")(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type="block8",
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.0,
                               activation=None,
                               block_type="block8",
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name="conv_7b")

    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name="predictions")(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name="inception_resnet_v2")

    # Load weights.
    if weights == "imagenet":
        if include_top:
            fname = "inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5"
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir="models",
                file_hash="e693bd0210a403b3192acc6073ad2e96",
            )
        else:
            fname = ("inception_resnet_v2_weights_"
                     "tf_dim_ordering_tf_kernels_notop.h5")
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir="models",
                file_hash="d19885ff4a710c122648d3b5c3b684e4",
            )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #11
0
def MobileNet(input_shape=None,
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000,
              classifier_activation='softmax',
              **kwargs):
    """Instantiates the MobileNet architecture.

  Reference:
  - [MobileNets: Efficient Convolutional Neural Networks
     for Mobile Vision Applications](
      https://arxiv.org/abs/1704.04861)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in the `tf.keras.backend.image_data_format()`.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input`
  on your inputs before passing them to the model.

  Args:
    input_shape: Optional shape tuple, only to be specified if `include_top`
      is False (otherwise the input shape has to be `(224, 224, 3)` (with
      `channels_last` data format) or (3, 224, 224) (with `channels_first`
      data format). It should have exactly 3 inputs channels, and width and
      height should be no smaller than 32. E.g. `(200, 200, 3)` would be one
      valid value. Default to `None`.
      `input_shape` will be ignored if the `input_tensor` is provided.
    alpha: Controls the width of the network. This is known as the width
      multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally
      decreases the number of filters in each layer. - If `alpha` > 1.0,
      proportionally increases the number of filters in each layer. - If
      `alpha` = 1, default number of filters from the paper are used at each
      layer. Default to 1.0.
    depth_multiplier: Depth multiplier for depthwise convolution. This is
      called the resolution multiplier in the MobileNet paper. Default to 1.0.
    dropout: Dropout rate. Default to 0.001.
    include_top: Boolean, whether to include the fully-connected layer at the
      top of the network. Default to `True`.
    weights: One of `None` (random initialization), 'imagenet' (pre-training
      on ImageNet), or the path to the weights file to be loaded. Default to
      `imagenet`.
    input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to
      use as image input for the model. `input_tensor` is useful for sharing
      inputs between multiple different networks. Default to None.
    pooling: Optional pooling mode for feature extraction when `include_top`
      is `False`.
      - `None` (default) means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will be applied.
    classes: Optional number of classes to classify images into, only to be
      specified if `include_top` is True, and if no `weights` argument is
      specified. Defaults to 1000.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.
  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    if input_shape is None:
        default_size = 224
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            rows = 224
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not in [128, 160, 192, 224]. '
                            'Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if backend.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1)
        else:
            shape = (1, 1, int(1024 * alpha))

        x = layers.GlobalAveragePooling2D()(x)
        x = layers.Reshape(shape, name='reshape_1')(x)
        x = layers.Dropout(dropout, name='dropout')(x)
        x = layers.Conv2D(classes, (1, 1), padding='same',
                          name='conv_preds')(x)
        x = layers.Reshape((classes, ), name='reshape_2')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(activation=classifier_activation,
                              name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name='mobilenet_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #12
0
def ResNet(
    stack_fn,
    preact,
    use_bias,
    model_name="resnet",
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    **kwargs
):
    """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.

    Args:
      stack_fn: a function that returns output tensor for the
        stacked residual blocks.
      preact: whether to use pre-activation or not
        (True for ResNetV2, False for ResNet and ResNeXt).
      use_bias: whether to use biases for convolutional layers or not
        (True for ResNet and ResNetV2, False for ResNeXt).
      model_name: string, model name.
      include_top: whether to include the fully-connected
        layer at the top of the network.
      weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(224, 224, 3)` (with `channels_last` data format)
        or `(3, 224, 224)` (with `channels_first` data format).
        It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """
    global layers
    if "layers" in kwargs:
        layers = kwargs.pop("layers")
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError("Unknown argument(s): %s" % (kwargs,))
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `imagenet` "
            "(pre-training on ImageNet), "
            "or the path to the weights file to be loaded."
        )

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            " as true, `classes` should be 1000"
        )

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name="conv1_pad")(
        img_input
    )
    x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name="conv1_conv")(x)

    if not preact:
        x = layers.BatchNormalization(
            axis=bn_axis, epsilon=1.001e-5, name="conv1_bn"
        )(x)
        x = layers.Activation("relu", name="conv1_relu")(x)

    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name="pool1_pad")(x)
    x = layers.MaxPooling2D(3, strides=2, name="pool1_pool")(x)

    x = stack_fn(x)

    if preact:
        x = layers.BatchNormalization(
            axis=bn_axis, epsilon=1.001e-5, name="post_bn"
        )(x)
        x = layers.Activation("relu", name="post_relu")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(
            classes, activation=classifier_activation, name="predictions"
        )(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D(name="max_pool")(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if (weights == "imagenet") and (model_name in WEIGHTS_HASHES):
        if include_top:
            file_name = model_name + "_weights_tf_dim_ordering_tf_kernels.h5"
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = (
                model_name + "_weights_tf_dim_ordering_tf_kernels_notop.h5"
            )
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(
            file_name,
            BASE_WEIGHTS_PATH + file_name,
            cache_subdir="models",
            file_hash=file_hash,
        )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #13
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000,
          classifier_activation='softmax'):
    """Instantiates the VGG16 model.

  Reference:
  - [Very Deep Convolutional Networks for Large-Scale Image Recognition](
  https://arxiv.org/abs/1409.1556) (ICLR 2015)

  By default, it loads weights pre-trained on ImageNet. Check 'weights' for
  other options.

  This model can be built both with 'channels_first' data format
  (channels, height, width) or 'channels_last' data format
  (height, width, channels).

  The default input size for this model is 224x224.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For VGG16, call `tf.keras.applications.vgg16.preprocess_input` on your
  inputs before passing them to the model.

  Args:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor
          (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)`
          (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional block.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional block, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
          on the "top" layer. Ignored unless `include_top=True`. Set
          `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = layers.Flatten(name='flatten')(x)
        x = layers.Dense(4096, activation='relu', name='fc1')(x)
        x = layers.Dense(4096, activation='relu', name='fc2')(x)

        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name='vgg16')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = data_utils.get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='64373286793e3c8b2b4e3219cbf3544b')
        else:
            weights_path = data_utils.get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='6d6bbae143d832006294945121d1f1fc')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #14
0
def xception(stack_fn,
             model_name='alignedxception',
             include_top=True,
             weights=None,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             classifier_activation='softmax',
             **kwargs):
    """ Generator for Xception models.
    This function generates a family of Xception models. See the Xception*() methods for specific model instantiations,
    obtained by selecting different block instantiations that produce Xception of various depths.

    Args:
      stack_fn: a function that returns output tensor for the stacked blocks.
      model_name: string, model name.
      include_top: whether to include the fully-connected layer at the top of the network.
      weights: one of `None` (random initialization) or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model.
      input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has
        to be `(299, 299, channels)` with `channels_last` data format
      pooling: optional pooling mode for feature extraction when `include_top` is `False`.
        - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer.
        - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and
          thus the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless
        `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """

    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights is None or file_io.file_exists(weights)):
        raise ValueError(
            'The `weights` argument should be `None` (random initialization) or the path to the weights '
            'file to be loaded. Pre-trained weights are unavailable')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=71,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    x = conv2d_same(img_input, 32, 3, stride=2, name='entry_flow/conv1_1')
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='entry_flow/conv1_1_bn')(x)
    x = layers.ReLU(name='entry_flow/conv1_1_relu')(x)

    x = conv2d_same(x, 64, 3, stride=1, name='entry_flow/conv1_2')
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='entry_flow/conv1_2_bn')(x)
    x = layers.ReLU(name='entry_flow/conv1_2_relu')(x)

    x = stack_fn(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dropout(0.5)(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if weights is not None:
        model.load_weights(weights)

    return model
Пример #15
0
def Xception(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the Xception architecture.

  Reference:
  - [Xception: Deep Learning with Depthwise Separable Convolutions](
      https://arxiv.org/abs/1610.02357) (CVPR 2017)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.
  Note that the default input image size for this model is 299x299.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For Xception, call `tf.keras.applications.xception.preprocess_input` on your
  inputs before passing them to the model.

  Args:
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(299, 299, 3)`.
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 71.
      E.g. `(150, 150, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True,
      and if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=71,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

  x = layers.Conv2D(
      32, (3, 3),
      strides=(2, 2),
      use_bias=False,
      name='block1_conv1')(img_input)
  x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
  x = layers.Activation('relu', name='block1_conv1_act')(x)
  x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
  x = layers.Activation('relu', name='block1_conv2_act')(x)

  residual = layers.Conv2D(
      128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = layers.BatchNormalization(axis=channel_axis)(residual)

  x = layers.SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv1_bn')(x)
  x = layers.Activation('relu', name='block2_sepconv2_act')(x)
  x = layers.SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv2_bn')(x)

  x = layers.MaxPooling2D((3, 3),
                          strides=(2, 2),
                          padding='same',
                          name='block2_pool')(x)
  x = layers.add([x, residual])

  residual = layers.Conv2D(
      256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = layers.BatchNormalization(axis=channel_axis)(residual)

  x = layers.Activation('relu', name='block3_sepconv1_act')(x)
  x = layers.SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv1_bn')(x)
  x = layers.Activation('relu', name='block3_sepconv2_act')(x)
  x = layers.SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv2_bn')(x)

  x = layers.MaxPooling2D((3, 3),
                          strides=(2, 2),
                          padding='same',
                          name='block3_pool')(x)
  x = layers.add([x, residual])

  residual = layers.Conv2D(
      728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = layers.BatchNormalization(axis=channel_axis)(residual)

  x = layers.Activation('relu', name='block4_sepconv1_act')(x)
  x = layers.SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv1_bn')(x)
  x = layers.Activation('relu', name='block4_sepconv2_act')(x)
  x = layers.SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
  x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv2_bn')(x)

  x = layers.MaxPooling2D((3, 3),
                          strides=(2, 2),
                          padding='same',
                          name='block4_pool')(x)
  x = layers.add([x, residual])

  for i in range(8):
    residual = x
    prefix = 'block' + str(i + 5)

    x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x)
    x = layers.SeparableConv2D(
        728, (3, 3),
        padding='same',
        use_bias=False,
        name=prefix + '_sepconv1')(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name=prefix + '_sepconv1_bn')(x)
    x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x)
    x = layers.SeparableConv2D(
        728, (3, 3),
        padding='same',
        use_bias=False,
        name=prefix + '_sepconv2')(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name=prefix + '_sepconv2_bn')(x)
    x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x)
    x = layers.SeparableConv2D(
        728, (3, 3),
        padding='same',
        use_bias=False,
        name=prefix + '_sepconv3')(x)
    x = layers.BatchNormalization(
        axis=channel_axis, name=prefix + '_sepconv3_bn')(x)

    x = layers.add([x, residual])

  residual = layers.Conv2D(
      1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = layers.BatchNormalization(axis=channel_axis)(residual)

  x = layers.Activation('relu', name='block13_sepconv1_act')(x)
  x = layers.SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
  x = layers.BatchNormalization(
      axis=channel_axis, name='block13_sepconv1_bn')(x)
  x = layers.Activation('relu', name='block13_sepconv2_act')(x)
  x = layers.SeparableConv2D(
      1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
  x = layers.BatchNormalization(
      axis=channel_axis, name='block13_sepconv2_bn')(x)

  x = layers.MaxPooling2D((3, 3),
                          strides=(2, 2),
                          padding='same',
                          name='block13_pool')(x)
  x = layers.add([x, residual])

  x = layers.SeparableConv2D(
      1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
  x = layers.BatchNormalization(
      axis=channel_axis, name='block14_sepconv1_bn')(x)
  x = layers.Activation('relu', name='block14_sepconv1_act')(x)

  x = layers.SeparableConv2D(
      2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
  x = layers.BatchNormalization(
      axis=channel_axis, name='block14_sepconv2_bn')(x)
  x = layers.Activation('relu', name='block14_sepconv2_act')(x)

  if include_top:
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(classes, activation=classifier_activation,
                     name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = training.Model(inputs, x, name='xception')

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      weights_path = data_utils.get_file(
          'xception_weights_tf_dim_ordering_tf_kernels.h5',
          TF_WEIGHTS_PATH,
          cache_subdir='models',
          file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')
    else:
      weights_path = data_utils.get_file(
          'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
          TF_WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          file_hash='b0042744bf5b25fce3cb969f33bebb97')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
Пример #16
0
def ResNet(stack_fn,
           preact,
           use_bias,
           model_name='resnet',
           include_top=True,
           weights='imagenet',
           input_tensor=None,
           input_shape=None,
           pooling=None,
           classes=1000,
           classifier_activation='softmax',
           **kwargs):
    """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.

  Reference:
  - [Deep Residual Learning for Image Recognition](
      https://arxiv.org/abs/1512.03385) (CVPR 2015)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Arguments:
    stack_fn: a function that returns output tensor for the
      stacked residual blocks.
    preact: whether to use pre-activation or not
      (True for ResNetV2, False for ResNet and ResNeXt).
    use_bias: whether to use biases for convolutional layers or not
      (True for ResNet and ResNetV2, False for ResNeXt).
    model_name: string, model name.
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)` (with `channels_last` data format)
      or `(3, 224, 224)` (with `channels_first` data format).
      It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional layer.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional layer, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.
  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)),
                             name='conv1_pad')(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias,
                      name='conv1_conv')(x)

    if not preact:
        x = layers.BatchNormalization(axis=bn_axis,
                                      epsilon=1.001e-5,
                                      name='conv1_bn')(x)
        x = layers.Activation('relu', name='conv1_relu')(x)

    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x)

    x = stack_fn(x)

    if preact:
        x = layers.BatchNormalization(axis=bn_axis,
                                      epsilon=1.001e-5,
                                      name='post_bn')(x)
        x = layers.Activation('relu', name='post_relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES):
        if include_top:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5'
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5'
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(file_name,
                                           BASE_WEIGHTS_PATH + file_name,
                                           cache_subdir='models',
                                           file_hash=file_hash)
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #17
0
def ResNetRS(
    depth: int,
    input_shape=None,
    bn_momentum=0.0,
    bn_epsilon=1e-5,
    activation: str = "relu",
    se_ratio=0.25,
    dropout_rate=0.25,
    drop_connect_rate=0.2,
    include_top=True,
    block_args: List[Dict[str, int]] = None,
    model_name="resnet-rs",
    pooling=None,
    weights="imagenet",
    input_tensor=None,
    classes=1000,
    classifier_activation: Union[str, Callable] = "softmax",
    include_preprocessing=True,
):
    """Build Resnet-RS model, given provided parameters.

    Args:
        depth: Depth of ResNet network.
        input_shape: optional shape tuple. It should have exactly 3 inputs
          channels, and width and height should be no smaller than 32. E.g.
          (200, 200, 3) would be one valid value.
        bn_momentum: Momentum parameter for Batch Normalization layers.
        bn_epsilon: Epsilon parameter for Batch Normalization layers.
        activation: activation function.
        se_ratio: Squeeze and Excitation layer ratio.
        dropout_rate: dropout rate before final classifier layer.
        drop_connect_rate: dropout rate at skip connections.
        include_top: whether to include the fully-connected layer at the top of
          the network.
        block_args: list of dicts, parameters to construct block modules.
        model_name: name of the model.
        pooling: optional pooling mode for feature extraction when `include_top`
          is `False`.
          - `None` means that the output of the model will be the 4D tensor
            output of the last convolutional layer.
          - `avg` means that global average pooling will be applied to the
            output of the last convolutional layer, and thus the output of the
            model will be a 2D tensor.
          - `max` means that global max pooling will be applied.
        weights: one of `None` (random initialization), `'imagenet'`
          (pre-training on ImageNet), or the path to the weights file to be
          loaded. Note- one model can have multiple imagenet variants depending
          on input shape it was trained with. For input_shape 224x224 pass
          `imagenet-i224` as argument. By default, highest input shape weights
          are downloaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to
          use as image input for the model.
        classes: optional number of classes to classify images into, only to be
          specified if `include_top` is True, and if no `weights` argument is
          specified.
        classifier_activation: A `str` or callable. The activation function to
          use on the "top" layer. Ignored unless `include_top=True`. Set
          `classifier_activation=None` to return the logits of the "top" layer.
        include_preprocessing: Boolean, whether to include the preprocessing
          layer (`Rescaling`) at the bottom of the network. Defaults to `True`.
          Note- Input image is normalized by ImageNet mean and standard
          deviation.

    Returns:
        A `tf.keras.Model` instance.

    Raises:
        ValueError: in case of invalid argument for `weights`, or invalid input
            shape.
        ValueError: if `classifier_activation` is not `softmax` or `None` when
            using a pretrained top layer.
    """
    # Validate parameters
    available_weight_variants = DEPTH_TO_WEIGHT_VARIANTS[depth]
    if weights == "imagenet":
        max_input_shape = max(available_weight_variants)
        # `imagenet` argument without explicit weights input size.
        # Picking weights trained with biggest available shape
        weights = f"{weights}-i{max_input_shape}"

    weights_allow_list = [f"imagenet-i{x}" for x in available_weight_variants]
    if not (weights in {*weights_allow_list, None}
            or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `'imagenet'` "
            "(pre-training on ImageNet, with highest available input shape),"
            " or the path to the weights file to be loaded. "
            f"For ResNetRS{depth} the following weight variants are "
            f"available {weights_allow_list} (default=highest)."
            f" Received weights={weights}")

    if weights in weights_allow_list and include_top and classes != 1000:
        raise ValueError(
            f"If using `weights` as `'imagenet'` or any "
            f"of {weights_allow_list} "
            f"with `include_top` as true, `classes` should be 1000. "
            f"Received classes={classes}")

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )
    # Define input tensor
    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1

    x = img_input

    if include_preprocessing:
        num_channels = input_shape[bn_axis - 1]
        x = layers.Rescaling(scale=1.0 / 255)(x)
        if num_channels == 3:
            x = layers.Normalization(
                mean=[0.485, 0.456, 0.406],
                variance=[0.229**2, 0.224**2, 0.225**2],
                axis=bn_axis,
            )(x)

    # Build stem
    x = STEM(bn_momentum=bn_momentum,
             bn_epsilon=bn_epsilon,
             activation=activation)(x)

    # Build blocks
    if block_args is None:
        block_args = BLOCK_ARGS[depth]

    for i, args in enumerate(block_args):
        survival_probability = get_survival_probability(
            init_rate=drop_connect_rate,
            block_num=i + 2,
            total_blocks=len(block_args) + 1,
        )

        x = BlockGroup(
            filters=args["input_filters"],
            activation=activation,
            strides=(1 if i == 0 else 2),
            num_repeats=args["num_repeats"],
            se_ratio=se_ratio,
            bn_momentum=bn_momentum,
            bn_epsilon=bn_epsilon,
            survival_probability=survival_probability,
            name=f"BlockGroup{i + 2}_",
        )(x)

    # Build head:
    if include_top:
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        if dropout_rate > 0:
            x = layers.Dropout(dropout_rate, name="top_dropout")(x)

        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name="predictions")(x)
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D(name="max_pool")(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Download weights
    if weights in weights_allow_list:
        weights_input_shape = weights.split("-")[-1]  # e. g. "i160"
        weights_name = f"{model_name}-{weights_input_shape}"
        if not include_top:
            weights_name += "_notop"

        filename = f"{weights_name}.h5"
        download_url = BASE_WEIGHTS_URL + filename
        weights_path = data_utils.get_file(
            fname=filename,
            origin=download_url,
            cache_subdir="models",
            file_hash=WEIGHT_HASHES[filename],
        )
        model.load_weights(weights_path)

    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #18
0
def InceptionV3(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the Inception v3 architecture.

  Reference:
  - [Rethinking the Inception Architecture for Computer Vision](
      http://arxiv.org/abs/1512.00567) (CVPR 2016)

  This function returns a Keras image classification model,
  optionally loaded with weights pre-trained on ImageNet.

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: each Keras Application expects a specific kind of input preprocessing.
  For `InceptionV3`, call `tf.keras.applications.inception_v3.preprocess_input`
  on your inputs before passing them to the model.
  `inception_v3.preprocess_input` will scale input pixels between -1 and 1.

  Args:
    include_top: Boolean, whether to include the fully-connected
      layer at the top, as the last layer of the network. Default to `True`.
    weights: One of `None` (random initialization),
      `imagenet` (pre-training on ImageNet),
      or the path to the weights file to be loaded. Default to `imagenet`.
    input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
      to use as image input for the model. `input_tensor` is useful for sharing
      inputs between multiple different networks. Default to None.
    input_shape: Optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(299, 299, 3)` (with `channels_last` data format)
      or `(3, 299, 299)` (with `channels_first` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 75.
      E.g. `(150, 150, 3)` would be one valid value.
      `input_shape` will be ignored if the `input_tensor` is provided.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` (default) means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified. Default to 1000.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.

  Returns:
    A `keras.Model` instance.
  """
  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=75,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  if backend.image_data_format() == 'channels_first':
    channel_axis = 1
  else:
    channel_axis = 3

  x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
  x = conv2d_bn(x, 32, 3, 3, padding='valid')
  x = conv2d_bn(x, 64, 3, 3)
  x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv2d_bn(x, 80, 1, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, 3, padding='valid')
  x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

  # mixed 0: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = layers.AveragePooling2D(
      (3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
  x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed0')

  # mixed 1: 35 x 35 x 288
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = layers.AveragePooling2D(
      (3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed1')

  # mixed 2: 35 x 35 x 288
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = layers.AveragePooling2D(
      (3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed2')

  # mixed 3: 17 x 17 x 768
  branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(
      branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate([branch3x3, branch3x3dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed3')

  # mixed 4: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 128, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 128, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = layers.AveragePooling2D(
      (3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed4')

  # mixed 5, 6: 17 x 17 x 768
  for i in range(2):
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 160, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 160, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(
                                              x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed' + str(5 + i))

  # mixed 7: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 192, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 192, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = layers.AveragePooling2D(
      (3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                         axis=channel_axis,
                         name='mixed7')

  # mixed 8: 8 x 8 x 1280
  branch3x3 = conv2d_bn(x, 192, 1, 1)
  branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid')

  branch7x7x3 = conv2d_bn(x, 192, 1, 1)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
  branch7x7x3 = conv2d_bn(
      branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate([branch3x3, branch7x7x3, branch_pool],
                         axis=channel_axis,
                         name='mixed8')

  # mixed 9: 8 x 8 x 2048
  for i in range(2):
    branch1x1 = conv2d_bn(x, 320, 1, 1)

    branch3x3 = conv2d_bn(x, 384, 1, 1)
    branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
    branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
    branch3x3 = layers.concatenate([branch3x3_1, branch3x3_2],
                                   axis=channel_axis,
                                   name='mixed9_' + str(i))

    branch3x3dbl = conv2d_bn(x, 448, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
    branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
    branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
    branch3x3dbl = layers.concatenate([branch3x3dbl_1, branch3x3dbl_2],
                                      axis=channel_axis)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(
                                              x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch3x3, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed' + str(9 + i))
  if include_top:
    # Classification block
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(classes, activation=classifier_activation,
                     name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = training.Model(inputs, x, name='inception_v3')

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      weights_path = data_utils.get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          file_hash='9a0d58056eeedaa3f26cb7ebd46da564')
    else:
      weights_path = data_utils.get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          file_hash='bcbd6486424b2319ff4ef7d526e38f63')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
Пример #19
0
def MobileNetV3(stack_fn,
                last_point_ch,
                input_shape=None,
                alpha=1.0,
                model_type='large',
                minimalistic=False,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                classes=1000,
                pooling=None,
                dropout_rate=0.2,
                classifier_activation='softmax'):
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError('input_tensor: ', input_tensor,
                                 'is not type input_tensor')
        if is_input_t_tensor:
            if backend.image_data_format() == 'channels_first':
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
        else:
            raise ValueError('input_tensor specified: ', input_tensor,
                             'is not a keras tensor')

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                             type(input_tensor), 'which is not a valid type')

        if backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == 'channels_first':
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
                input_shape = (3, cols, rows)
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]
                input_shape = (cols, rows, 3)
    # If input_shape is None and input_tensor is None using standart shape
    if input_shape is None and input_tensor is None:
        input_shape = (None, None, 3)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]
    if rows and cols and (rows < 32 or cols < 32):
        raise ValueError(
            'Input size must be at least 32x32; got `input_shape=' +
            str(input_shape) + '`')
    if weights == 'imagenet':
        if (not minimalistic and alpha not in [0.75, 1.0]
                or minimalistic and alpha != 1.0):
            raise ValueError(
                'If imagenet weights are being loaded, '
                'alpha can be one of `0.75`, `1.0` for non minimalistic'
                ' or `1.0` for minimalistic only.')

        if rows != cols or rows != 224:
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not 224.'
                            ' Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    if minimalistic:
        kernel = 3
        activation = relu
        se_ratio = None
    else:
        kernel = 5
        activation = hard_swish
        se_ratio = 0.25

    x = img_input
    x = layers.Rescaling(scale=1. / 127.5, offset=-1.)(x)
    x = layers.Conv2D(16,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='same',
                      use_bias=False,
                      name='Conv')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv/BatchNorm')(x)
    x = activation(x)

    x = stack_fn(x, kernel, activation, se_ratio)

    last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6)

    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_point_ch = _depth(last_point_ch * alpha)
    x = layers.Conv2D(last_conv_ch,
                      kernel_size=1,
                      padding='same',
                      use_bias=False,
                      name='Conv_1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1/BatchNorm')(x)
    x = activation(x)
    x = layers.Conv2D(last_point_ch,
                      kernel_size=1,
                      padding='same',
                      use_bias=True,
                      name='Conv_2')(x)
    x = activation(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        if channel_axis == 1:
            x = layers.Reshape((last_point_ch, 1, 1))(x)
        else:
            x = layers.Reshape((1, 1, last_point_ch))(x)
        if dropout_rate > 0:
            x = layers.Dropout(dropout_rate)(x)
        x = layers.Conv2D(classes,
                          kernel_size=1,
                          padding='same',
                          name='Logits')(x)
        x = layers.Flatten()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(activation=classifier_activation,
                              name='Predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)
    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name='MobilenetV3' + model_type)

    # Load weights.
    if weights == 'imagenet':
        model_name = '{}{}_224_{}_float'.format(
            model_type, '_minimalistic' if minimalistic else '', str(alpha))
        if include_top:
            file_name = 'weights_mobilenet_v3_' + model_name + '.h5'
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = 'weights_mobilenet_v3_' + model_name + '_no_top.h5'
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(file_name,
                                           BASE_WEIGHT_PATH + file_name,
                                           cache_subdir='models',
                                           file_hash=file_hash)
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #20
0
def MobileNetV2(input_shape=None,
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                pooling=None,
                classes=1000,
                classifier_activation='softmax',
                **kwargs):
    """Instantiates the MobileNetV2 architecture.

  Reference:
  - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
      https://arxiv.org/abs/1801.04381) (CVPR 2018)

  Optionally loads weights pre-trained on ImageNet.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input`
  on your inputs before passing them to the model.

  Args:
    input_shape: Optional shape tuple, to be specified if you would
      like to use a model with an input image resolution that is not
      (224, 224, 3).
      It should have exactly 3 inputs channels (224, 224, 3).
      You can also omit this option if you would like
      to infer input_shape from an input_tensor.
      If you choose to include both input_tensor and input_shape then
      input_shape will be used if they match, if the shapes
      do not match then we will throw an error.
      E.g. `(160, 160, 3)` would be one valid value.
    alpha: Float between 0 and 1. controls the width of the network.
      This is known as the width multiplier in the MobileNetV2 paper,
      but the name is kept for consistency with `applications.MobileNetV1`
      model in Keras.
      - If `alpha` < 1.0, proportionally decreases the number
          of filters in each layer.
      - If `alpha` > 1.0, proportionally increases the number
          of filters in each layer.
      - If `alpha` = 1, default number of filters from the paper
          are used at each layer.
    include_top: Boolean, whether to include the fully-connected
      layer at the top of the network. Defaults to `True`.
    weights: String, one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: Optional Keras tensor (i.e. output of
      `layers.Input()`)
      to use as image input for the model.
    pooling: String, optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model
          will be the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a
          2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: Integer, optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape or invalid alpha, rows when
      weights='imagenet'
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError('input_tensor: ', input_tensor,
                                 'is not type input_tensor')
        if is_input_t_tensor:
            if backend.image_data_format() == 'channels_first':
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
        else:
            raise ValueError('input_tensor specified: ', input_tensor,
                             'is not a keras tensor')

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                             type(input_tensor), 'which is not a valid type')

        if input_shape is None and not backend.is_keras_tensor(input_tensor):
            default_size = 224
        elif input_shape is None and backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == 'channels_first':
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]

            if rows == cols and rows in [96, 128, 160, 192, 224]:
                default_size = rows
            else:
                default_size = 224

    # If input_shape is None and no input_tensor
    elif input_shape is None:
        default_size = 224

    # If input_shape is not None, assume default size
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [96, 128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of `0.35`, `0.50`, `0.75`, '
                             '`1.0`, `1.3` or `1.4` only.')

        if rows != cols or rows not in [96, 128, 160, 192, 224]:
            rows = 224
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not in [96, 128, 160, 192, 224].'
                            ' Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    first_block_filters = _make_divisible(32 * alpha, 8)
    x = layers.Conv2D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='same',
                      use_bias=False,
                      name='Conv1')(img_input)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = layers.ReLU(6., name='Conv1_relu')(x)

    x = _inverted_res_block(x,
                            filters=16,
                            alpha=alpha,
                            stride=1,
                            expansion=1,
                            block_id=0)

    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=1)
    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=2)

    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=3)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=4)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=5)

    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=6)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=7)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=8)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=9)

    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=10)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=11)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=12)

    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=13)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=14)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=15)

    x = _inverted_res_block(x,
                            filters=320,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = layers.Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = layers.ReLU(6., name='out_relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)

    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name='mobilenetv2_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #21
0
def VGG19(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000,
          classifier_activation='softmax'):
    """Instantiates the VGG19 architecture.

  Reference:
  - [Very Deep Convolutional Networks for Large-Scale Image Recognition](
      https://arxiv.org/abs/1409.1556) (ICLR 2015)

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  The default input size for this model is 224x224.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your
  inputs before passing them to the model.
  `vgg19.preprocess_input` will convert the input images from RGB to BGR,
  then will zero-center each color channel with respect to the ImageNet dataset,
  without scaling.

  Args:
    include_top: whether to include the 3 fully-connected
      layers at the top of the network.
    weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)`
      (with `channels_last` data format)
      or `(3, 224, 224)` (with `channels_first` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 32.
      E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.

  Returns:
    A `keras.Model` instance.
  """
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv3')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = layers.Flatten(name='flatten')(x)
        x = layers.Dense(4096, activation='relu', name='fc1')(x)
        x = layers.Dense(4096, activation='relu', name='fc2')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name='vgg19')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = data_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='cbe5617147190e668d6c5d5026f83318')
        else:
            weights_path = data_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='253f8cb515780f3b799900260a226db6')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Пример #22
0
def MobileNetV2(
    input_shape=None,
    alpha=1.0,
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    **kwargs,
):
    """Instantiates the MobileNetV2 architecture.

    MobileNetV2 is very similar to the original MobileNet,
    except that it uses inverted residual blocks with
    bottlenecking features. It has a drastically lower
    parameter count than the original MobileNet.
    MobileNets support any input size greater
    than 32 x 32, with larger image sizes
    offering better performance.

    Reference:
    - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
        https://arxiv.org/abs/1801.04381) (CVPR 2018)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input`
    on your inputs before passing them to the model.
    `mobilenet_v2.preprocess_input` will scale input pixels between -1 and 1.

    Args:
      input_shape: Optional shape tuple, to be specified if you would
        like to use a model with an input image resolution that is not
        (224, 224, 3).
        It should have exactly 3 inputs channels (224, 224, 3).
        You can also omit this option if you would like
        to infer input_shape from an input_tensor.
        If you choose to include both input_tensor and input_shape then
        input_shape will be used if they match, if the shapes
        do not match then we will throw an error.
        E.g. `(160, 160, 3)` would be one valid value.
      alpha: Float, larger than zero, controls the width of the network. This is
        known as the width multiplier in the MobileNetV2 paper, but the name is
        kept for consistency with `applications.MobileNetV1` model in Keras.
        - If `alpha` < 1.0, proportionally decreases the number
            of filters in each layer.
        - If `alpha` > 1.0, proportionally increases the number
            of filters in each layer.
        - If `alpha` = 1.0, default number of filters from the paper
            are used at each layer.
      include_top: Boolean, whether to include the fully-connected layer at the
        top of the network. Defaults to `True`.
      weights: String, one of `None` (random initialization), 'imagenet'
        (pre-training on ImageNet), or the path to the weights file to be
        loaded.
      input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
      pooling: String, optional pooling mode for feature extraction when
        `include_top` is `False`.
        - `None` means that the output of the model
            will be the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a
            2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: Optional integer number of classes to classify images into, only
        to be specified if `include_top` is True, and if no `weights` argument
        is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """
    global layers
    if "layers" in kwargs:
        layers = kwargs.pop("layers")
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError(f"Unknown argument(s): {kwargs}")
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError("The `weights` argument should be either "
                         "`None` (random initialization), `imagenet` "
                         "(pre-training on ImageNet), "
                         "or the path to the weights file to be loaded.  "
                         f"Received `weights={weights}`")

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            f"as true, `classes` should be 1000. Received `classes={classes}`")

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError(
                    f"input_tensor: {input_tensor}"
                    "is not type input_tensor. "
                    f"Received `type(input_tensor)={type(input_tensor)}`")
        if is_input_t_tensor:
            if backend.image_data_format() == "channels_first":
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        "input_shape[1] must equal shape(input_tensor)[1] "
                        "when `image_data_format` is `channels_first`; "
                        "Received `input_tensor.shape="
                        f"{input_tensor.shape}`"
                        f", `input_shape={input_shape}`")
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        "input_tensor.shape[2] must equal input_shape[1]; "
                        "Received `input_tensor.shape="
                        f"{input_tensor.shape}`, "
                        f"`input_shape={input_shape}`")
        else:
            raise ValueError("input_tensor is not a Keras tensor; "
                             f"Received `input_tensor={input_tensor}`")

    # If input_shape is None, infer shape from input_tensor.
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError(
                "input_tensor must be a valid Keras tensor type; "
                f"Received {input_tensor} of type {type(input_tensor)}")

        if input_shape is None and not backend.is_keras_tensor(input_tensor):
            default_size = 224
        elif input_shape is None and backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == "channels_first":
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]

            if rows == cols and rows in [96, 128, 160, 192, 224]:
                default_size = rows
            else:
                default_size = 224

    # If input_shape is None and no input_tensor
    elif input_shape is None:
        default_size = 224

    # If input_shape is not None, assume default size.
    else:
        if backend.image_data_format() == "channels_first":
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [96, 128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if backend.image_data_format() == "channels_last":
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == "imagenet":
        if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
            raise ValueError("If imagenet weights are being loaded, "
                             "alpha must be one of `0.35`, `0.50`, `0.75`, "
                             "`1.0`, `1.3` or `1.4` only;"
                             f" Received `alpha={alpha}`")

        if rows != cols or rows not in [96, 128, 160, 192, 224]:
            rows = 224
            logging.warning("`input_shape` is undefined or non-square, "
                            "or `rows` is not in [96, 128, 160, 192, 224]. "
                            "Weights for input shape (224, 224) will be "
                            "loaded as the default.")

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == "channels_first" else -1

    first_block_filters = _make_divisible(32 * alpha, 8)
    x = layers.Conv2D(
        first_block_filters,
        kernel_size=3,
        strides=(2, 2),
        padding="same",
        use_bias=False,
        name="Conv1",
    )(img_input)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="bn_Conv1")(x)
    x = layers.ReLU(6.0, name="Conv1_relu")(x)

    x = _inverted_res_block(x,
                            filters=16,
                            alpha=alpha,
                            stride=1,
                            expansion=1,
                            block_id=0)

    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=1)
    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=2)

    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=3)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=4)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=5)

    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=6)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=7)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=8)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=9)

    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=10)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=11)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=12)

    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=13)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=14)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=15)

    x = _inverted_res_block(x,
                            filters=320,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we increase the number of output
    # channels.
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = layers.Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name="Conv_1")(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="Conv_1_bn")(x)
    x = layers.ReLU(6.0, name="out_relu")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name="predictions")(x)

    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account any potential predecessors of
    # `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name="mobilenetv2_%0.2f_%s" % (alpha, rows))

    # Load weights.
    if weights == "imagenet":
        if include_top:
            model_name = ("mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" +
                          str(float(alpha)) + "_" + str(rows) + ".h5")
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir="models")
        else:
            model_name = ("mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" +
                          str(float(alpha)) + "_" + str(rows) + "_no_top" +
                          ".h5")
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir="models")
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model