Пример #1
0
def yolo_eval(yolo_outputs,
              anchors,
              num_classes,
              image_shape,
              max_boxes=20,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input and return filtered boxes."""
    num_layers = len(yolo_outputs)
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[
        3, 4, 5
    ], [1, 2, 3]]  # default setting
    input_shape = K.shape(yolo_outputs[0])[1:3] * 32
    # with tf.Session() as sess:
    #     print(sess.run(input_shape[1]))
    boxes = []
    box_scores = []
    for l in range(num_layers):
        _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
                                                    anchors[anchor_mask[l]],
                                                    num_classes, input_shape,
                                                    image_shape)
        boxes.append(_boxes)
        box_scores.append(_box_scores)
    boxes = K.concatenate(boxes, axis=0)
    box_scores = K.concatenate(box_scores, axis=0)

    mask = box_scores >= score_threshold
    max_boxes_tensor = K.constant(max_boxes, dtype='int32')
    boxes_ = []
    scores_ = []
    classes_ = []
    for c in range(num_classes):
        # TODO: use keras backend instead of tf.
        class_boxes = tf.boolean_mask(boxes, mask[:, c])
        class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
        nms_index = tf.image.non_max_suppression(class_boxes,
                                                 class_box_scores,
                                                 max_boxes_tensor,
                                                 iou_threshold=iou_threshold)
        class_boxes = K.gather(class_boxes, nms_index)
        class_box_scores = K.gather(class_box_scores, nms_index)
        classes = K.ones_like(class_box_scores, 'int32') * c
        boxes_.append(class_boxes)
        scores_.append(class_box_scores)
        classes_.append(classes)
    boxes_ = K.concatenate(boxes_, axis=0)
    scores_ = K.concatenate(scores_, axis=0)
    classes_ = K.concatenate(classes_, axis=0)

    return boxes_, scores_, classes_
Пример #2
0
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats,
        [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
        grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(
        input_shape[::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs
Пример #3
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation('reshape', (4, 2), shape=(8, 1))
        check_single_tensor_operation('permute_dimensions', (4, 2, 3),
                                      pattern=(2, 0, 1))
        check_single_tensor_operation('repeat', (4, 1), n=3)
        check_single_tensor_operation('flatten', (4, 1))
        check_single_tensor_operation('batch_flatten', (20, 2, 5))
        check_single_tensor_operation('expand_dims', (4, 3), axis=-1)
        check_single_tensor_operation('expand_dims', (4, 3, 2), axis=1)
        check_single_tensor_operation('squeeze', (4, 3, 1), axis=2)
        check_single_tensor_operation('squeeze', (4, 1, 1), axis=1)
        check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)},
                                         'squeeze', {'axis': 2}, (4, 3, 1, 1))
Пример #4
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation('reshape', (4, 2), shape=(8, 1))
        check_single_tensor_operation('permute_dimensions', (4, 2, 3),
                                      pattern=(2, 0, 1))
        check_single_tensor_operation('repeat', (4, 1), n=3)
        check_single_tensor_operation('flatten', (4, 1))
        check_single_tensor_operation('expand_dims', (4, 3), dim=-1)
        check_single_tensor_operation('expand_dims', (4, 3, 2), dim=1)
        check_single_tensor_operation('squeeze', (4, 3, 1), axis=2)
        check_single_tensor_operation('squeeze', (4, 1, 1), axis=1)
        check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)},
                                         'squeeze', {'axis': 2},
                                         (4, 3, 1, 1))
Пример #5
0
    def build_discriminator(self):

        model = Sequential()

        ## Head
        if self.add_invmass_disc:
            model.add(
                Lambda(
                    add_invmass_from_8cartesian,
                    input_shape=self.output_shape,
                    output_shape=(self.output_shape[0] + 1, ),
                ))
        else:
            model.add(Dense(128, input_shape=self.output_shape))

        if self.do_batch_normalization_disc:
            model.add(BatchNormalization())
        # model.add(LeakyReLU(alpha=0.2))
        if self.do_concatenate_disc:
            model.add(Lambda(lambda x: K.concatenate([x * x, x])))
            model.add(LeakyReLU(alpha=0.2))

        ## Main Body
        if self.depth_disc > 0 and self.width_disc > 0:
            for level in xrange(0, self.depth_disc):
                model.add(Dense(
                    width_disc /
                    (2**level)))  #Triangle with width halved at each level
                model.add(LeakyReLU(alpha=0.2))
        else:
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(64))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(32))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(16))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(8))
            model.add(LeakyReLU(alpha=0.2))

        ## Tail
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.output_shape)
        validity = model(img)

        return Model(img, validity)
def TSNs_SpatialStream(input_shape,
                       classes,
                       num_segments=3,
                       base_model='Xception',
                       dropout_prob=0.8,
                       consensus_type='avg',
                       partial_bn=True):
    """
    Spatial stream of the Temporal Segment Networks (https://arxiv.org/pdf/1705.02953.pdf) defined as multi-input Keras model.
    """
    # Define the shared layers, base conv net and enable partial batch
    # normalization strategy
    inputs = [Input(input_shape) for _ in range(num_segments)]
    dropout = Dropout(dropout_prob)
    dense = Dense(classes, activation=None)
    act = Activation(activation='softmax', name='prediction')
    models_dict = dict(getmembers(keras.applications, isfunction))
    base = models_dict[base_model](include_top=False, pooling='avg')
    if partial_bn:
        num_bn_layers = 0
        for layer in base.layers:
            if isinstance(layer, BatchNormalization):
                num_bn_layers += 1
                if num_bn_layers != 1:
                    layer.trainable = False
    # Pass multiple inputs (depending on num_segments) through the base conv
    # net
    outputs = []
    visual_features = []
    for seg_input in inputs:
        seg_output = base(seg_input)
        visual_features.append(seg_output)
        seg_output = dropout(seg_output)
        seg_output = dense(seg_output)
        outputs.append(seg_output)
    # Use a consensus function to combine class scores
    if consensus_type == 'avg':
        output = Average()(outputs)
    elif consensus_type == 'max':
        output = Maximum()(outputs)
    elif consensus_type == 'attention':
        weighted_outputs = []
        attn_layer = Dense(1, use_bias=False, name='attn_layer')
        attn_weights = [attn_layer(_) for _ in visual_features]
        attn_weights = Lambda(lambda x: K.concatenate(x, axis=-1),
                              name='concatenate')(attn_weights)
        attn_weights = Activation('softmax')(attn_weights)
        for i, seg_output in enumerate(outputs):
            weight = Lambda(lambda x: x[:, i])(attn_weights)
            weighted_outputs.append(Multiply()([weight, seg_output]))
        output = Add()(weighted_outputs)

    output = act(output)
    model = Model(inputs, output)
    return model
def yolo_boxes_to_corners(graph, box_xy, box_wh):
    with graph.as_default():
        box_mins = box_xy - (box_wh / 2.)
        box_maxes = box_xy + (box_wh / 2.)

        return K.concatenate([
            box_mins[..., 1:2],  # y_min
            box_mins[..., 0:1],  # x_min
            box_maxes[..., 1:2],  # y_max
            box_maxes[..., 0:1]  # x_max
        ])
Пример #8
0
def fix_outputs(x):
    """
    Take nominal delphes format of 19 columns and fix some columns
    """
    return K.concatenate([
        # x[:,0:21],
        x[:, 0:7],  # epxpypz for lep1,lep2 -1 for no py2
        x[:, 7:8],  # nvtx
        K.sign(x[:, 8:10]),  # q1 q2
        x[:, 10:12],  # iso1 iso2
        x[:, 12:14],  # met, metphi
        x[:, 14:19],  # jet pts
    ])
Пример #9
0
    def yolo_correct_boxes(self, box_xy, box_wh, input_shape, image_shape):
        '''Get corrected boxes'''
        box_yx = box_xy[..., ::-1]
        box_hw = box_wh[..., ::-1]
        input_shape = K.cast(input_shape, K.dtype(box_yx))
        image_shape = K.cast(image_shape, K.dtype(box_yx))
        new_shape = K.round(image_shape * K.min(input_shape / image_shape))
        offset = (input_shape - new_shape) / 2. / input_shape
        scale = input_shape / new_shape
        box_yx = (box_yx - offset) * scale
        box_hw *= scale

        box_mins = box_yx - (box_hw / 2.)
        box_maxes = box_yx + (box_hw / 2.)
        boxes = K.concatenate([
            box_mins[..., 0:1],  # y_min
            box_mins[..., 1:2],  # x_min
            box_maxes[..., 0:1],  # y_max
            box_maxes[..., 1:2]  # x_max
        ])

        # Scale boxes back to original image shape.
        boxes *= K.concatenate([image_shape, image_shape])
        return boxes
Пример #10
0
def fix_outputs(x):
    """
    Take nominal delphes format of 21 columns and fix some columns
    """
    return K.concatenate([
        # x[:,0:21],
        x[:, 0:8],  # epxpypz for lep1,lep2
        K.sign(x[:, 8:9]),  # lep1 charge
        x[:, 9:10],  # lep1 iso
        K.sign(x[:, 10:11]),  # lep2 charge
        x[:, 11:12],  # lep2 iso
        K.round(x[:, 12:13]),  # nvtxs
        x[:, 13:15],  # met, metphi
        K.round(x[:, 15:16]),  # ngenjets
        x[:, 16:21],  # jet pts
    ])
Пример #11
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation("reshape", (4, 2), shape=(8, 1))
        check_single_tensor_operation("permute_dimensions", (4, 2, 3), pattern=(2, 0, 1))
        check_single_tensor_operation("repeat", (4, 1), n=3)
        check_single_tensor_operation("flatten", (4, 1))
        check_single_tensor_operation("expand_dims", (4, 3), dim=-1)
        check_single_tensor_operation("expand_dims", (4, 3, 2), dim=1)
        check_single_tensor_operation("squeeze", (4, 3, 1), axis=2)
Пример #12
0
    def build_generator(self):

        model = Sequential()

        ## Head
        model.add(Dense(64, input_shape=self.noise_shape))
        if self.do_batch_normalization_gen:
            model.add(BatchNormalization())
        model.add(LeakyReLU(alpha=0.2))
        if self.do_concatenate_gen:
            model.add(Lambda(lambda x: K.concatenate([x * x, x])))
            model.add(LeakyReLU(alpha=0.2))

        ## Main Body
        if self.depth_gen > 0 and self.width_gen > 0:
            for level in xrange(0, self.depth_gen):
                model.add(Dense(
                    width_gen /
                    (2**level)))  #Triangle with width halved at each level
                model.add(LeakyReLU(alpha=0.2))
        elif self.beefy_generator:
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(256))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(512))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(1024))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(1024))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(512))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(256))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
        else:
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(128))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(64))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dense(32))
            model.add(LeakyReLU(alpha=0.2))

        ## Tail
        model.add(Dense(self.output_shape[0]))
        if self.do_tanh_gen:
            model.add(Activation("tanh"))
        elif self.fix_delphes_outputs:
            model.add(
                Lambda(fix_outputs,
                       input_shape=self.output_shape,
                       output_shape=self.output_shape))

        model.summary()

        noise = Input(shape=self.noise_shape)
        img = model(noise)

        return Model(noise, img)
Пример #13
0
    def step(self, a, states):
        r_tm1 = states[:self.nb_layers]
        c_tm1 = states[self.nb_layers:2 * self.nb_layers]
        e_tm1 = states[2 * self.nb_layers:3 * self.nb_layers]

        if self.extrap_start_time is not None:
            t = states[-1]
            a = K.switch(
                t >= self.t_extrap, states[-2], a
            )  # if past self.extrap_start_time, the previous prediction will be treated as the actual

        c = []
        r = []
        e = []

        # Update R units starting from the top
        for l in reversed(range(self.nb_layers)):
            inputs = [r_tm1[l], e_tm1[l]]
            if l < self.nb_layers - 1:
                inputs.append(r_up)

            inputs = K.concatenate(inputs, axis=self.channel_axis)
            i = self.conv_layers['i'][l].call(inputs)
            f = self.conv_layers['f'][l].call(inputs)
            o = self.conv_layers['o'][l].call(inputs)
            _c = f * c_tm1[l] + i * self.conv_layers['c'][l].call(inputs)
            _r = o * self.LSTM_activation(_c)
            c.insert(0, _c)
            r.insert(0, _r)

            if l > 0:
                r_up = self.upsample.call(_r)

        # Update feedforward path starting from the bottom
        for l in range(self.nb_layers):
            ahat = self.conv_layers['ahat'][l].call(r[l])
            if l == 0:
                ahat = K.minimum(ahat, self.pixel_max)
                frame_prediction = ahat

            # compute errors
            e_up = self.error_activation(ahat - a)
            e_down = self.error_activation(a - ahat)

            e.append(K.concatenate((e_up, e_down), axis=self.channel_axis))

            if self.output_layer_num == l:
                if self.output_layer_type == 'A':
                    output = a
                elif self.output_layer_type == 'Ahat':
                    output = ahat
                elif self.output_layer_type == 'R':
                    output = r[l]
                elif self.output_layer_type == 'E':
                    output = e[l]

            if l < self.nb_layers - 1:
                a = self.conv_layers['a'][l].call(e[l])
                a = self.pool.call(a)  # target for next layer

        if self.output_layer_type is None:
            if self.output_mode == 'prediction':
                output = frame_prediction
            else:
                for l in range(self.nb_layers):
                    layer_error = K.mean(K.batch_flatten(e[l]),
                                         axis=-1,
                                         keepdims=True)
                    all_error = layer_error if l == 0 else K.concatenate(
                        (all_error, layer_error), axis=-1)
                if self.output_mode == 'error':
                    output = all_error
                else:
                    output = K.concatenate(
                        (K.batch_flatten(frame_prediction), all_error),
                        axis=-1)

        states = r + c + e
        if self.extrap_start_time is not None:
            states += [frame_prediction, t + 1]
        return output, states
Пример #14
0
def add_invmass_from_8cartesian(x):
    invmass = K.sqrt((x[:, 0:1] + x[:, 4:5])**2 - (x[:, 1:2] + x[:, 5:6])**2 -
                     (x[:, 2:3] + x[:, 6:7])**2 - (x[:, 3:4] + x[:, 7:8])**2)
    return K.concatenate([x, invmass])
Пример #15
0
# this will contain our generated image
if K.image_dim_ordering() == 'th':
    combination_image = K.placeholder((1, 3, img_width, img_height))
else:
    combination_image = K.placeholder((1, img_width, img_height, 3))

image_tensor = [base_image]
for style_image_tensor in style_reference_images:
    image_tensor.append(style_image_tensor)
image_tensor.append(combination_image)

nb_tensors = len(image_tensor)
nb_style_images = nb_tensors - 2  # Content andoutput image not considered

# combine the various image into a single Keras tensor
input_tensor = K.concatenate(image_tensor, axis=0)

if K.image_dim_ordering() == 'th':
    shape = (nb_tensors, 3, img_width, img_height)
else:
    shape = (nb_tensors, img_width, img_height, 3)

ip = Input(tensor=input_tensor, shape=shape)

# build a network
x = Conv2D(64, (3, 3), activation='relu', name='conv1_1', padding='same')(ip)
x = Conv2D(64, (3, 3), activation='relu', name='conv1_2', padding='same')(x)
x = pooling_func(x)

x = Conv2D(128, (3, 3), activation='relu', name='conv2_1', padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', name='conv2_2', padding='same')(x)
Пример #16
0
        return tf.Session(config=tf.ConfigProto(
            gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
    else:
        return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))


import keras.backend.tensorflow_backend as KTF
KTF.set_session(get_session())
target_image = KTF.constant(preprocess_image(target_image_path))
style_reference_image = KTF.constant(
    preprocess_image(style_reference_image_path))
combination_image = KTF.placeholder((1, img_height, img_width, 3))

# In[9]:

input_tensor = KTF.concatenate(
    [target_image, style_reference_image, combination_image], axis=0)

# In[10]:

model = vgg19.VGG19(input_tensor=input_tensor,
                    weights='imagenet',
                    include_top=False)
print('Model loaded.')

# In[11]:


def content_loss(base, combination):
    return KTF.sum(KTF.square(combination - base))

Пример #17
0
    def yolo_loss(self,
                  args,
                  anchors,
                  num_classes,
                  ignore_thresh=.5,
                  print_loss=False):
        '''Return yolo_loss tensor

        Parameters
        ----------
        yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
        y_true: list of array, the output of preprocess_true_boxes
        anchors: array, shape=(N, 2), wh
        num_classes: integer
        ignore_thresh: float, the iou threshold whether to ignore object confidence loss

        Returns
        -------
        loss: tensor, shape=(1,)

        '''

        num_layers = len(anchors) // 3  # default setting

        yolo_outputs = args[:num_layers]
        y_true = args[num_layers:]

        anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]
                       ] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
        input_shape = K.cast(
            K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
        grid_shapes = [
            K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0]))
            for l in range(num_layers)
        ]
        loss = 0
        m = K.shape(yolo_outputs[0])[0]  # batch size, tensor
        mf = K.cast(m, K.dtype(yolo_outputs[0]))

        for l in range(num_layers):
            object_mask = y_true[l][..., 4:5]
            true_class_probs = y_true[l][..., 5:]

            grid, raw_pred, pred_xy, pred_wh = self.yolo_head(
                yolo_outputs[l],
                anchors[anchor_mask[l]],
                num_classes,
                input_shape,
                calc_loss=True)
            pred_box = K.concatenate([pred_xy, pred_wh])

            # Darknet raw box to calculate loss.
            raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
            raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] *
                                input_shape[::-1])
            raw_true_wh = K.switch(
                object_mask, raw_true_wh,
                K.zeros_like(raw_true_wh))  # avoid log(0)=-inf
            box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]

            # Find ignore mask, iterate over each of batch.
            ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                         size=1,
                                         dynamic_size=True)
            object_mask_bool = K.cast(object_mask, 'bool')

            def loop_body(b, ignore_mask):
                true_box = tf.boolean_mask(y_true[l][b, ..., 0:4],
                                           object_mask_bool[b, ..., 0])
                iou = box_iou(pred_box[b], true_box)
                best_iou = K.max(iou, axis=-1)
                ignore_mask = ignore_mask.write(
                    b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
                return b + 1, ignore_mask

            _, ignore_mask = K.control_flow_ops.while_loop(
                lambda b, *args: b < m, loop_body, [0, ignore_mask])
            ignore_mask = ignore_mask.stack()
            ignore_mask = K.expand_dims(ignore_mask, -1)

            # K.binary_crossentropy is helpful to avoid exp overflow.
            xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(
                raw_true_xy, raw_pred[..., 0:2], from_logits=True)
            wh_loss = object_mask * box_loss_scale * 0.5 * K.square(
                raw_true_wh - raw_pred[..., 2:4])
            confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \
                (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
            class_loss = object_mask * K.binary_crossentropy(
                true_class_probs, raw_pred[..., 5:], from_logits=True)

            xy_loss = K.sum(xy_loss) / mf
            wh_loss = K.sum(wh_loss) / mf
            confidence_loss = K.sum(confidence_loss) / mf
            class_loss = K.sum(class_loss) / mf
            loss += xy_loss + wh_loss + confidence_loss + class_loss
            if print_loss:
                loss = tf.Print(loss, [
                    loss, xy_loss, wh_loss, confidence_loss, class_loss,
                    K.sum(ignore_mask)
                ],
                                message='loss: ')
        return loss
Пример #18
0
def add_invmass_from_8cartesian(x):
    return K.concatenate([x, invmass_from_8cartesian(x)])