Пример #1
0
    def test_sparse_concat(self):
        x_d = np.array([0, 7, 2, 3], dtype=np.float32)
        x_r = np.array([0, 2, 2, 3], dtype=np.int64)
        x_c = np.array([4, 3, 2, 3], dtype=np.int64)

        x_sparse_1 = sparse.csr_matrix((x_d, (x_r, x_c)), shape=(4, 5))

        x_d = np.array([0, 7, 2, 3], dtype=np.float32)
        x_r = np.array([0, 2, 2, 3], dtype=np.int64)
        x_c = np.array([4, 3, 2, 3], dtype=np.int64)

        x_sparse_2 = sparse.csr_matrix((x_d, (x_r, x_c)), shape=(4, 5))

        x_dense_1 = x_sparse_1.toarray()
        x_dense_2 = x_sparse_2.toarray()

        backends = [KTF]
        if KTH.th_sparse_module:
            # Theano has some dependency issues for sparse
            backends.append(KTH)

        for K in backends:
            k_s = K.concatenate([K.variable(x_sparse_1), K.variable(x_sparse_2)])
            assert K.is_sparse(k_s)

            k_s_d = K.eval(k_s)

            k_d = K.eval(K.concatenate([K.variable(x_dense_1), K.variable(x_dense_2)]))

            assert k_s_d.shape == k_d.shape
            assert_allclose(k_s_d, k_d, atol=1e-05)
Пример #2
0
def test_metrics():
    y_a = K.variable(np.random.random((6, 7)))
    y_b = K.variable(np.random.random((6, 7)))
    for metric in all_metrics:
        output = metric(y_a, y_b)
        print(metric.__name__)
        assert K.eval(output).shape == (6,)
Пример #3
0
 def build(self, input_shape):
     assert len(input_shape) == 3
     self.W = K.variable(self.init((input_shape[-1], self.attention_dim)))
     self.b = K.variable(self.init((self.attention_dim, )))
     self.u = K.variable(self.init((self.attention_dim, 1)))
     self.trainable_weights = [self.W, self.b, self.u]
     super(AttLayer, self).build(input_shape)
Пример #4
0
def test_merge_subtract():
    i1 = layers.Input(shape=(4, 5))
    i2 = layers.Input(shape=(4, 5))
    i3 = layers.Input(shape=(4, 5))
    i4 = layers.Input(shape=(3, 5))
    o = layers.subtract([i1, i2])
    assert o._keras_shape == (None, 4, 5)
    model = models.Model([i1, i2], o)

    subtract_layer = layers.Subtract()
    o2 = subtract_layer([i1, i2])
    assert subtract_layer.output_shape == (None, 4, 5)

    x1 = np.random.random((2, 4, 5))
    x2 = np.random.random((2, 4, 5))
    out = model.predict([x1, x2])
    assert out.shape == (2, 4, 5)
    assert_allclose(out, x1 - x2, atol=1e-4)

    assert subtract_layer.compute_mask([i1, i2], [None, None]) is None
    assert np.all(K.eval(subtract_layer.compute_mask(
        [i1, i2], [K.variable(x1), K.variable(x2)])))

    # Test invalid use case
    with pytest.raises(ValueError):
        subtract_layer.compute_mask([i1, i2], x1)
    with pytest.raises(ValueError):
        subtract_layer.compute_mask(i1, [None, None])
    with pytest.raises(ValueError):
        subtract_layer([i1, i2, i3])
    with pytest.raises(ValueError):
        subtract_layer([i1])
Пример #5
0
    def __call__(self, loss):
        from . import patches

        output = self.layer.get_output(True)
        assert K.ndim(output) == 4
        batch_size = K.shape(output)[0] // 2
        patch_size = self.patch_size
        patch_stride = 1
        generated = output[:batch_size, :, :, :]
        content = output[batch_size:, :, :, :]
        # extract patches from feature maps
        generated_patches, generated_patches_norm = \
            patches.make_patches(generated, patch_size, patch_stride)
        content_patches, content_patches_norm = \
            patches.make_patches(content, patch_size, patch_stride)
        a_patches, a_patches_norm = \
            patches.make_patches(K.variable(self.features_a), patch_size, patch_stride)
        ap_patches, ap_patches_norm = \
            patches.make_patches(K.variable(self.features_ap), patch_size, patch_stride)
        # find best patches and calculate loss
        patch_ids = patches.find_patch_matches(
            content_patches, content_patches_norm,
            a_patches / a_patches_norm)
        best_analogy_patches = K.reshape(
            ap_patches[patch_ids], K.shape(generated_patches))
        loss += self.weight * K.sum(K.square(best_analogy_patches - generated_patches)) / patch_size ** 2
        return loss
Пример #6
0
def test_convolution_2d_dim_ordering():
    nb_filter = 4
    nb_row = 3
    nb_col = 2
    stack_size = 3

    np.random.seed(1337)
    weights = [np.random.random((nb_filter, stack_size, nb_row, nb_col)),
               np.random.random(nb_filter)]
    input = np.random.random((1, stack_size, 10, 10))

    layer = convolutional.Convolution2D(
        nb_filter, nb_row, nb_col,
        weights=weights,
        input_shape=input.shape[1:],
        dim_ordering='th')
    layer.input = K.variable(input)
    out_th = K.eval(layer.get_output(False))

    input = np.transpose(input, (0, 2, 3, 1))
    weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
    layer = convolutional.Convolution2D(
        nb_filter, nb_row, nb_col,
        weights=weights,
        input_shape=input.shape[1:],
        dim_ordering='tf')
    layer.input = K.variable(input)
    out_tf = K.eval(layer.get_output(False))

    assert_allclose(out_tf, np.transpose(out_th, (0, 2, 3, 1)), atol=1e-05)
Пример #7
0
 def content_mean_square_error(self, y_true, y_pred):
     y_pred = K.variable(value=y_pred)
     y_true = K.variable(value=y_true)
     _, filters, x_pos, y_pos = self.get_shape(y_pred)
     y_pred = K.reshape(y_pred, (filters, x_pos * y_pos))
     y_true = K.reshape(y_true, (filters, x_pos * y_pos))
     return K.sum(K.square(y_pred - y_true))
Пример #8
0
def test_zero_padding_3d():
    num_samples = 2
    stack_size = 2
    input_len_dim1 = 4
    input_len_dim2 = 5
    input_len_dim3 = 3

    inputs = np.ones((num_samples,
                     input_len_dim1, input_len_dim2, input_len_dim3,
                     stack_size))

    # basic test
    for data_format in ['channels_first', 'channels_last']:
        layer_test(convolutional.ZeroPadding3D,
                   kwargs={'padding': (2, 2, 2), 'data_format': data_format},
                   input_shape=inputs.shape)
        layer_test(convolutional.ZeroPadding3D,
                   kwargs={'padding': ((1, 2), (3, 4), (0, 2)), 'data_format': data_format},
                   input_shape=inputs.shape)

        # correctness test
        layer = convolutional.ZeroPadding3D(padding=(2, 2, 2),
                                            data_format=data_format)
        layer.build(inputs.shape)
        outputs = layer(K.variable(inputs))
        np_output = K.eval(outputs)
        if data_format == 'channels_last':
            for offset in [0, 1, -1, -2]:
                assert_allclose(np_output[:, offset, :, :, :], 0.)
                assert_allclose(np_output[:, :, offset, :, :], 0.)
                assert_allclose(np_output[:, :, :, offset, :], 0.)
            assert_allclose(np_output[:, 2:-2, 2:-2, 2:-2, :], 1.)
        elif data_format == 'channels_first':
            for offset in [0, 1, -1, -2]:
                assert_allclose(np_output[:, :, offset, :, :], 0.)
                assert_allclose(np_output[:, :, :, offset, :], 0.)
                assert_allclose(np_output[:, :, :, :, offset], 0.)
            assert_allclose(np_output[:, :, 2:-2, 2:-2, 2:-2], 1.)

        layer = convolutional.ZeroPadding3D(padding=((1, 2), (3, 4), (0, 2)),
                                            data_format=data_format)
        layer.build(inputs.shape)
        outputs = layer(K.variable(inputs))
        np_output = K.eval(outputs)
        if data_format == 'channels_last':
            for dim1_offset in [0, -1, -2]:
                assert_allclose(np_output[:, dim1_offset, :, :, :], 0.)
            for dim2_offset in [0, 1, 2, -1, -2, -3, -4]:
                assert_allclose(np_output[:, :, dim2_offset, :, :], 0.)
            for dim3_offset in [-1, -2]:
                assert_allclose(np_output[:, :, :, dim3_offset, :], 0.)
            assert_allclose(np_output[:, 1:-2, 3:-4, 0:-2, :], 1.)
        elif data_format == 'channels_first':
            for dim1_offset in [0, -1, -2]:
                assert_allclose(np_output[:, :, dim1_offset, :, :], 0.)
            for dim2_offset in [0, 1, 2, -1, -2, -3, -4]:
                assert_allclose(np_output[:, :, :, dim2_offset, :], 0.)
            for dim3_offset in [-1, -2]:
                assert_allclose(np_output[:, :, :, :, dim3_offset], 0.)
            assert_allclose(np_output[:, :, 1:-2, 3:-4, 0:-2], 1.)
def test_prelu():
    from keras.layers.advanced_activations import PReLU
    np.random.seed(1337)
    inp = get_standard_values()

    for train in [True, False]:
        # test with custom weights
        alphas = np.random.random(inp.shape)
        layer = PReLU(weights=alphas, input_shape=inp.flatten().shape)
        # calling build here causes an error, unclear if this is a bug
        # layer.build()

        layer.input = K.variable(inp)
        outp = K.eval(layer.get_output(train))
        assert_allclose(inp, outp)

        layer.input = K.variable(-inp)
        outp = K.eval(layer.get_output(train))
        assert_allclose(-alphas*inp, outp)

        # test with default weights
        layer = PReLU(input_shape=inp.flatten().shape)
        # layer.build()
        layer.input = K.variable(inp)
        outp = K.eval(layer.get_output(train))
        assert_allclose(inp, outp)

        layer.input = K.variable(-inp)
        outp = K.eval(layer.get_output(train))

        assert_allclose(0., alphas*outp)

        layer.get_config()
Пример #10
0
def test_vgg_fc():
    if K.image_data_format() == 'channels_first':
        x1 = K.variable(np.random.random((1, 512, 14, 14)))
        y1_shape = (1, 512, 8, 8)
    else:
        x1 = K.variable(np.random.random((1, 14, 14, 512)))
        y1_shape = (1, 8, 8, 512)
Пример #11
0
def residual_drop(x, input_shape, output_shape, strides=(1, 1)):
    global add_tables

    nb_filter = output_shape[0]
    conv = Convolution2D(nb_filter, 3, 3, subsample=strides, border_mode="same")(x)
    conv = BatchNormalization(axis=1)(conv)
    conv = Activation("relu")(conv)
    conv = Convolution2D(nb_filter, 3, 3, border_mode="same")(conv)
    conv = BatchNormalization(axis=1)(conv)

    if strides[0] >= 2:
        x = AveragePooling2D(strides)(x)

    if (output_shape[0] - input_shape[0]) > 0:
        pad_shape = (1,
                     output_shape[0] - input_shape[0],
                     output_shape[1],
                     output_shape[2])
        padding = K.ones(pad_shape)
        padding = K.repeat_elements(padding, K.shape(x)[0], axis=0)
        x = Lambda(lambda y: K.concatenate([y, padding], axis=1),
                   output_shape=output_shape)(x)

    _death_rate = K.variable(death_rate)
    scale = K.ones_like(conv) - _death_rate
    conv = Lambda(lambda c: K.in_test_phase(scale * c, c),
                  output_shape=output_shape)(conv)

    out = merge([conv, x], mode="sum")
    out = Activation("relu")(out)

    gate = K.variable(1, dtype="uint8")
    add_tables += [{"death_rate": _death_rate, "gate": gate}]
    return Lambda(lambda tensors: K.switch(gate, tensors[0], tensors[1]),
                  output_shape=output_shape)([out, x])
Пример #12
0
 def __init__(self, lr=0.01, momentum=0., decay_block=1000, nesterov=False, **kwargs):
     super(SGD_step_decay, self).__init__(**kwargs)
     self.__dict__.update(locals())
     self.iterations = K.variable(0.)
     self.lr = K.variable(lr)
     self.momentum = K.variable(momentum)
     self.decay_block = K.variable(decay_block)
Пример #13
0
def _runner(layer_class):
    """
    All the recurrent layers share the same interface,
    so we can run through them with a single function.
    """
    for ret_seq in [True, False]:
        layer = layer_class(output_dim, return_sequences=ret_seq, weights=None, input_shape=(timesteps, input_dim))
        layer.input = K.variable(np.ones((nb_samples, timesteps, input_dim)))
        layer.get_config()

        for train in [True, False]:
            out = K.eval(layer.get_output(train))
            # Make sure the output has the desired shape
            if ret_seq:
                assert out.shape == (nb_samples, timesteps, output_dim)
            else:
                assert out.shape == (nb_samples, output_dim)

            mask = layer.get_output_mask(train)

    # check statefulness
    layer = layer_class(
        output_dim, return_sequences=False, weights=None, batch_input_shape=(nb_samples, timesteps, input_dim)
    )
    layer.input = K.variable(np.ones((nb_samples, timesteps, input_dim)))
    out = K.eval(layer.get_output(train))
    assert out.shape == (nb_samples, output_dim)
Пример #14
0
def eigen_loss(y_true, y_pred):
    y_true = tf.Print(y_true, [y_true], message='y_true', summarize=30)
    y_pred = tf.Print(y_pred, [y_pred], message='y_pred', summarize=30)

    y_true_clipped = K.clip(y_true, K.epsilon(), None)
    y_pred_clipped = K.clip(y_pred, K.epsilon(), None)

    first_log = K.log(y_pred_clipped + 1.)
    second_log = K.log(y_true_clipped + 1.)
    w_x = K.variable(np.array([[-1., 0., 1.],
                                [-1., 0., 1.],
                                [-1., 0., 1.]]).reshape(3, 3, 1, 1))

    grad_x_pred = K.conv2d(first_log, w_x, padding='same')
    grad_x_true = K.conv2d(second_log, w_x, padding='same')

    w_y = K.variable(np.array([[-1., -1., -1.],
                                [0., 0., 0.],
                                [1., 1., 1.]]).reshape(3, 3, 1, 1))

    grad_y_pred = K.conv2d(first_log, w_y, padding='same')
    grad_y_true = K.conv2d(second_log, w_y, padding='same')
    diff_x = grad_x_pred - grad_x_true
    diff_y = grad_y_pred - grad_y_true

    log_term = K.mean(K.square((first_log - second_log)), axis=-1)
    sc_inv_term = K.square(K.mean((first_log - second_log),axis=-1))
    grad_loss = K.mean(K.square(diff_x) + K.square(diff_y), axis=-1)

    return log_term - (0.5 * sc_inv_term) + grad_loss
Пример #15
0
 def loss(self, y_true, y_pred):
     """ prepare a loss of the given metric/loss operating on non-bg data """
     yt = y_true #.eval()
     ytbg = np.where(yt == 0)
     y_true_fix = K.variable(yt.flat(ytbg))
     y_pred_fix = K.variable(y_pred.flat(ytbg))
     return self.metric(y_true_fix, y_pred_fix)
Пример #16
0
    def __init__(self, nb_labels,
                 weights=None,
                 input_type='prob',
                 dice_type='soft',
                 approx_hard_max=True,
                 vox_weights=None,
                 crop_indices=None,
                 area_reg=0.1):  # regularization for bottom of Dice coeff
        """
        input_type is 'prob', or 'max_label'
        dice_type is hard or soft
        approx_hard_max - see note below

        Note: for hard dice, we grab the most likely label and then compute a
        one-hot encoding for each voxel with respect to possible labels. To grab the most
        likely labels, argmax() can be used, but only when Dice is used as a metric
        For a Dice *loss*, argmax is not differentiable, and so we can't use it
        Instead, we approximate the prob->one_hot translation when approx_hard_max is True.
        """

        self.nb_labels = nb_labels
        self.weights = None if weights is None else K.variable(weights)
        self.vox_weights = None if vox_weights is None else K.variable(vox_weights)
        self.input_type = input_type
        self.dice_type = dice_type
        self.approx_hard_max = approx_hard_max
        self.area_reg = area_reg
        self.crop_indices = crop_indices

        if self.crop_indices is not None and vox_weights is not None:
            self.vox_weights = utils.batch_gather(self.vox_weights, self.crop_indices)
Пример #17
0
def test_merge_add():
    i1 = layers.Input(shape=(4, 5))
    i2 = layers.Input(shape=(4, 5))
    i3 = layers.Input(shape=(4, 5))
    o = layers.add([i1, i2, i3])
    assert o._keras_shape == (None, 4, 5)
    model = models.Model([i1, i2, i3], o)

    add_layer = layers.Add()
    o2 = add_layer([i1, i2, i3])
    assert add_layer.output_shape == (None, 4, 5)

    x1 = np.random.random((2, 4, 5))
    x2 = np.random.random((2, 4, 5))
    x3 = np.random.random((2, 4, 5))
    out = model.predict([x1, x2, x3])
    assert out.shape == (2, 4, 5)
    assert_allclose(out, x1 + x2 + x3, atol=1e-4)

    assert add_layer.compute_mask([i1, i2, i3], [None, None, None]) is None
    assert np.all(K.eval(add_layer.compute_mask(
        [i1, i2, i3], [K.variable(x1), K.variable(x2), K.variable(x3)])))

    # Test invalid use case
    with pytest.raises(ValueError):
        add_layer.compute_mask([i1, i2, i3], x1)
    with pytest.raises(ValueError):
        add_layer.compute_mask(i1, [None, None, None])
    with pytest.raises(ValueError):
        add_layer.compute_mask([i1, i2, i3], [None, None])
Пример #18
0
    def call(self):
        E = K.variable(np.random.random((1000,100)), name="entity_embeddings")
        R = K.variable(np.random.random((10,10000)), name="relation_embeddings")
        x = K.placeholder(shape=(1,3), name="spo")
        y = K.placeholder(ndim=0, name="y")
        batch_placeholder = K.cast(x, 'int32')[0]
        # print(batch_placeholder.eval())
        s, o, p = [batch_placeholder[i] for i in range(3)]

        s2v = K.gather(E, s)
        o2v = K.gather(E, o)
        r2v = K.gather(R, p)

        def ccorr(a, b):
            return T.outer(a,b).flatten()
            # return T.arctan(s2v) + T.arctan(o2v)
            # return (s2v.dimshuffle('x', 'x', 0, 'x') + o2v.dimshuffle('x', 'x', 0, 'x')).flatten()
            # return T.nnet.conv2d(a.dimshuffle('x', 'x', 0, 'x'), b.dimshuffle('x', 'x', 0, 'x'), None,
            #                None,
            #                filter_flip=True, border_mode='half')
            # return self.ccorr1d_sc(a, b, border_mode='half')
        eta = K.dot(r2v, ccorr(s2v, o2v))
        # py = 1/(1+K.exp(-eta))
        # l = -K.log(py)
        # from theano import pp, function, printing
        # grad = T.grad(eta, E)
        # print(pp(grad))
        # func = function([x], grad)
        func = K.function([x, y], K.gradients(eta, [s2v, o2v, r2v, E, R]))

        # for i in func.maker.fgraph.outputs:
            # print(pp(i))
        # print (T.grad(py, s2v))
        print (func([[[1,2,3]], -1]))
Пример #19
0
def check_loss(_shape):
    if _shape == '2d':
        shape = (2, 3)
    elif _shape == '3d':
        shape = (2, 3, 1)
    elif _shape == '4d':
        shape = (8, 5, 6, 7)
    elif _shape == '5d':
        shape = (9, 8, 5, 6, 7)

    y_a = 1.0*np.ones(shape)
    y_b = 0.5+np.random.random(shape)

    print(y_a)
    print(y_b)
    out1 = K.eval(_loss_tensor(K.variable(y_a), K.variable(y_b)))
    print(out1)
    out2 = _loss_np(y_a, y_b)
    print(out2)

    assert out1.shape == out2.shape
    assert out1.shape == shape[:-1]
    print(np.linalg.norm(out1))
    print(np.linalg.norm(out2))
    print(np.linalg.norm(out1-out2))
Пример #20
0
def test_sparse_categorical_crossentropy():
    y_pred = K.variable(np.array([[0.3, 0.6, 0.1],
                                  [0.1, 0.2, 0.7]]))
    y_true = K.variable(np.array([1, 2]))
    expected_loss = - (np.log(0.6) + np.log(0.7)) / 2
    loss = K.eval(losses.sparse_categorical_crossentropy(y_true, y_pred))
    assert np.isclose(expected_loss, np.mean(loss))
def main(weights_path, base_path, base_file, style_path, style_file,
         combo_path, img_width, img_height, iterations):
    result_prefix = base_file[:-4] + '_' + style_file[:-4]
    base_img_path = base_path + base_file
    style_img_path = style_path + style_file
    # get tensor representations of images
    base_img = K.variable(preprocess_image(base_img_path,
                                           img_width,
                                           img_height))
    style_img = K.variable(preprocess_image(style_img_path,
                                            img_width,
                                            img_height))
    combo_img = K.placeholder((1, 3, img_width, img_height))
    # combine the 3 images into a single Keras tensor
    input_tensor = K.concatenate([base_img, style_img, combo_img],
                                 axis=0)

    print('Creating painting of {} in the style of {}'.format(base_file[:-4],
                                                              style_file[:-4]))
    print('Loading model with VGG16 network weights...')
    nn = model(weights_path, input_tensor, img_width, img_height)
    loss, grads = calc_loss_grad(nn, combo_img, img_width, img_height)
    evaluate = Evaluator(loss, grads, combo_img, img_width, img_height)
    return optimizer(evaluate, img_width, img_height, combo_path,
                     result_prefix, iterations=iterations)
Пример #22
0
def test_zero_padding_1d():
    num_samples = 2
    input_dim = 2
    num_steps = 5
    shape = (num_samples, num_steps, input_dim)
    input = np.ones(shape)

    # basic test
    layer_test(convolutional.ZeroPadding1D,
               kwargs={'padding': 2},
               input_shape=input.shape)
    layer_test(convolutional.ZeroPadding1D,
               kwargs={'padding': (1, 2)},
               input_shape=input.shape)

    # correctness test
    layer = convolutional.ZeroPadding1D(padding=2)
    layer.build(shape)
    output = layer(K.variable(input))
    np_output = K.eval(output)
    for offset in [0, 1, -1, -2]:
        assert_allclose(np_output[:, offset, :], 0.)
    assert_allclose(np_output[:, 2:-2, :], 1.)

    layer = convolutional.ZeroPadding1D(padding=(1, 2))
    layer.build(shape)
    output = layer(K.variable(input))
    np_output = K.eval(output)
    for left_offset in [0]:
        assert_allclose(np_output[:, left_offset, :], 0.)
    for right_offset in [-1, -2]:
        assert_allclose(np_output[:, right_offset, :], 0.)
    assert_allclose(np_output[:, 1:-2, :], 1.)
    layer.get_config()
Пример #23
0
def test_cropping_3d():
    num_samples = 2
    stack_size = 2
    input_len_dim1 = 8
    input_len_dim2 = 8
    input_len_dim3 = 8
    cropping = ((2, 2), (3, 3), (2, 3))

    for data_format in ['channels_last', 'channels_first']:
        if data_format == 'channels_first':
            inputs = np.random.rand(num_samples, stack_size,
                                    input_len_dim1, input_len_dim2, input_len_dim3)
        else:
            inputs = np.random.rand(num_samples,
                                    input_len_dim1, input_len_dim2,
                                    input_len_dim3, stack_size)
        # basic test
        layer_test(convolutional.Cropping3D,
                   kwargs={'cropping': cropping,
                           'data_format': data_format},
                   input_shape=inputs.shape)
        # correctness test
        layer = convolutional.Cropping3D(cropping=cropping,
                                         data_format=data_format)
        layer.build(inputs.shape)
        output = layer(K.variable(inputs))
        np_output = K.eval(output)
        # compare with numpy
        if data_format == 'channels_first':
            expected_out = inputs[:,
                                  :,
                                  cropping[0][0]: -cropping[0][1],
                                  cropping[1][0]: -cropping[1][1],
                                  cropping[2][0]: -cropping[2][1]]
        else:
            expected_out = inputs[:,
                                  cropping[0][0]: -cropping[0][1],
                                  cropping[1][0]: -cropping[1][1],
                                  cropping[2][0]: -cropping[2][1],
                                  :]
        assert_allclose(np_output, expected_out)

    for data_format in ['channels_last', 'channels_first']:
        if data_format == 'channels_first':
            inputs = np.random.rand(num_samples, stack_size,
                                    input_len_dim1, input_len_dim2, input_len_dim3)
        else:
            inputs = np.random.rand(num_samples,
                                    input_len_dim1, input_len_dim2,
                                    input_len_dim3, stack_size)
        # another correctness test (no cropping)
        cropping = ((0, 0), (0, 0), (0, 0))
        layer = convolutional.Cropping3D(cropping=cropping,
                                         data_format=data_format)
        layer.build(inputs.shape)
        output = layer(K.variable(inputs))
        np_output = K.eval(output)
        # compare with input
        assert_allclose(np_output, inputs)
Пример #24
0
def test_zero_padding_2d():
    num_samples = 2
    stack_size = 2
    input_num_row = 4
    input_num_col = 5
    for data_format in ['channels_first', 'channels_last']:
        inputs = np.ones((num_samples, input_num_row, input_num_col, stack_size))
        inputs = np.ones((num_samples, stack_size, input_num_row, input_num_col))

        # basic test
        layer_test(convolutional.ZeroPadding2D,
                   kwargs={'padding': (2, 2), 'data_format': data_format},
                   input_shape=inputs.shape)
        layer_test(convolutional.ZeroPadding2D,
                   kwargs={'padding': ((1, 2), (3, 4)), 'data_format': data_format},
                   input_shape=inputs.shape)

        # correctness test
        layer = convolutional.ZeroPadding2D(padding=(2, 2),
                                            data_format=data_format)
        layer.build(inputs.shape)
        output = layer(K.variable(inputs))
        np_output = K.eval(output)
        if data_format == 'channels_last':
            for offset in [0, 1, -1, -2]:
                assert_allclose(np_output[:, offset, :, :], 0.)
                assert_allclose(np_output[:, :, offset, :], 0.)
            assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.)
        elif data_format == 'channels_first':
            for offset in [0, 1, -1, -2]:
                assert_allclose(np_output[:, :, offset, :], 0.)
                assert_allclose(np_output[:, :, :, offset], 0.)
            assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.)

        layer = convolutional.ZeroPadding2D(padding=((1, 2), (3, 4)),
                                            data_format=data_format)
        layer.build(inputs.shape)
        output = layer(K.variable(inputs))
        np_output = K.eval(output)
        if data_format == 'channels_last':
            for top_offset in [0]:
                assert_allclose(np_output[:, top_offset, :, :], 0.)
            for bottom_offset in [-1, -2]:
                assert_allclose(np_output[:, bottom_offset, :, :], 0.)
            for left_offset in [0, 1, 2]:
                assert_allclose(np_output[:, :, left_offset, :], 0.)
            for right_offset in [-1, -2, -3, -4]:
                assert_allclose(np_output[:, :, right_offset, :], 0.)
            assert_allclose(np_output[:, 1:-2, 3:-4, :], 1.)
        elif data_format == 'channels_first':
            for top_offset in [0]:
                assert_allclose(np_output[:, :, top_offset, :], 0.)
            for bottom_offset in [-1, -2]:
                assert_allclose(np_output[:, :, bottom_offset, :], 0.)
            for left_offset in [0, 1, 2]:
                assert_allclose(np_output[:, :, :, left_offset], 0.)
            for right_offset in [-1, -2, -3, -4]:
                assert_allclose(np_output[:, :, :, right_offset], 0.)
            assert_allclose(np_output[:, :, 1:-2, 3:-4], 1.)
Пример #25
0
 def __init__(self, threshold,
              smooth_threshold,
              sigma=1,
              **kwargs):
     self.sigma = sigma
     self.threshold = K.variable(threshold)
     self.smooth_threshold = K.variable(smooth_threshold)
     super().__init__(**kwargs)
Пример #26
0
def get_mask_weight_blending(inputs, min=0, max=2):
    input = concat(inputs)
    return sequential([
        Convolution2D(1, 3, 3),
        Flatten(),
        Dense(1),
        LinearInBounds(K.variable(min), K.variable(2), clip=True),
    ], ns='mask_weight_blending')(input)
 def __init__(self, lr=5, momentum=0., decay=0.,
              nesterov=False, **kwargs):
     super(SimpleSGD, self).__init__(**kwargs)
     self.__dict__.update(locals())
     self.iterations = K.variable(0.)
     self.lr = K.variable(lr)
     self.momentum = K.variable(momentum)
     self.decay = K.variable(decay)
Пример #28
0
 def __init__(self, E, R, d, rparam, input_shape=(3,), **kwargs):
     bnd = math.sqrt(6) / math.sqrt(2*E)
     from numpy.random import uniform
     self.init = [K.variable(uniform(size=(E,d), low=-bnd, high=bnd), name="E"),
                  K.variable(uniform(size=(R,d*d), low=-bnd, high=bnd), name="R")]
     self.rparam = rparam
     kwargs["input_shape"] = input_shape
     super(HolographicLayer, self).__init__(**kwargs)
Пример #29
0
def test_categorical_hinge():
    y_pred = K.variable(np.array([[0.3, 0.2, 0.1],
                                  [0.1, 0.2, 0.7]]))
    y_true = K.variable(np.array([[0, 1, 0],
                                  [1, 0, 0]]))
    expected_loss = ((0.3 - 0.2 + 1) + (0.7 - 0.1 + 1)) / 2.0
    loss = K.eval(losses.categorical_hinge(y_true, y_pred))
    assert np.isclose(expected_loss, np.mean(loss))
Пример #30
0
 def __init__(self, lr=0.01, momentum=0., decay=0., nesterov=False,
              *args, **kwargs):
     super(SGD_exponential_decay, self).__init__(**kwargs)
     self.__dict__.update(locals())
     self.iterations = K.variable(0.)
     self.lr = K.variable(lr)
     self.momentum = K.variable(momentum)
     self.decay = K.variable(decay)
Пример #31
0
 def test_objective_shapes_2d(self, loss_fn):
     y_a = K.variable(np.random.random((6, 7)))
     y_b = K.variable(np.random.random((6, 7)))
     objective_output = loss_fn(y_a, y_b)
     assert K.eval(objective_output).shape == (6,)
Пример #32
0
def yolo_head(feats, anchors, num_classes):
    """Convert final layer features to bounding box parameters.

    Parameters
    ----------
    feats : tensor
        Final convolutional layer features.
    anchors : array-like
        Anchor box widths and heights.
    num_classes : int
        Number of target classes.

    Returns
    -------
    box_xy : tensor
        x, y box predictions adjusted by spatial location in conv layer.
    box_wh : tensor
        w, h box predictions adjusted by anchors and conv spatial resolution.
    box_conf : tensor
        Probability estimate for whether each box contains any object.
    box_class_pred : tensor
        Probability distribution estimate for each box over class labels.
    """
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.variable(anchors), [1, 1, 1, num_anchors, 2])
    # Static implementation for fixed models.
    # TODO: Remove or add option for static implementation.
    # _, conv_height, conv_width, _ = K.int_shape(feats)
    # conv_dims = K.variable([conv_width, conv_height])

    # Dynamic implementation of conv dims for fully convolutional model.
    conv_dims = K.shape(feats)[1:3]  # assuming channels last
    # In YOLO the height index is the inner most iteration.
    conv_height_index = K.arange(0, stop=conv_dims[0])
    conv_width_index = K.arange(0, stop=conv_dims[1])
    conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

    # TODO: Repeat_elements and tf.split doesn't support dynamic splits.
    # conv_width_index = K.repeat_elements(conv_width_index, conv_dims[1], axis=0)
    conv_width_index = K.tile(K.expand_dims(conv_width_index, 0),
                              [conv_dims[0], 1])
    conv_width_index = K.flatten(K.transpose(conv_width_index))
    conv_index = K.transpose(K.stack([conv_height_index, conv_width_index]))
    conv_index = K.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2])
    conv_index = K.cast(conv_index, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
    conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))

    # Static generation of conv_index:
    # conv_index = np.array([_ for _ in np.ndindex(conv_width, conv_height)])
    # conv_index = conv_index[:, [1, 0]]  # swap columns for YOLO ordering.
    # conv_index = K.variable(
    #     conv_index.reshape(1, conv_height, conv_width, 1, 2))
    # feats = Reshape(
    #     (conv_dims[0], conv_dims[1], num_anchors, num_classes + 5))(feats)

    box_confidence = K.sigmoid(feats[..., 4:5])
    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_class_probs = K.softmax(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    # Note: YOLO iterates over height index before width index.
    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims

    return box_confidence, box_xy, box_wh, box_class_probs
Пример #33
0
 def W_init(shape, name=None):
     """Initialize weights as in paper"""
     values = np.random.normal(loc=0, scale=1e-2, size=shape)
     return K.variable(values, name=name)
Пример #34
0
def test_zero_padding_2d():
    nb_samples = 2
    stack_size = 2
    input_nb_row = 4
    input_nb_col = 5
    dim_ordering = K.image_dim_ordering()
    assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'

    if dim_ordering == 'tf':
        input = np.ones((nb_samples, input_nb_row, input_nb_col, stack_size))
    elif dim_ordering == 'th':
        input = np.ones((nb_samples, stack_size, input_nb_row, input_nb_col))

    # basic test
    layer_test(convolutional.ZeroPadding2D,
               kwargs={'padding': (2, 2)},
               input_shape=input.shape)
    layer_test(convolutional.ZeroPadding2D,
               kwargs={'padding': (1, 2, 3, 4)},
               input_shape=input.shape)
    layer_test(convolutional.ZeroPadding2D,
               kwargs={
                   'padding': {
                       'top_pad': 1,
                       'bottom_pad': 2,
                       'left_pad': 3,
                       'right_pad': 4
                   }
               },
               input_shape=input.shape)

    # correctness test
    layer = convolutional.ZeroPadding2D(padding=(2, 2))
    layer.build(input.shape)
    output = layer(K.variable(input))
    np_output = K.eval(output)
    if dim_ordering == 'tf':
        for offset in [0, 1, -1, -2]:
            assert_allclose(np_output[:, offset, :, :], 0.)
            assert_allclose(np_output[:, :, offset, :], 0.)
        assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.)
    elif dim_ordering == 'th':
        for offset in [0, 1, -1, -2]:
            assert_allclose(np_output[:, :, offset, :], 0.)
            assert_allclose(np_output[:, :, :, offset], 0.)
        assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.)

    layer = convolutional.ZeroPadding2D(padding=(1, 2, 3, 4))
    layer.build(input.shape)
    output = layer(K.variable(input))
    np_output = K.eval(output)
    if dim_ordering == 'tf':
        for top_offset in [0]:
            assert_allclose(np_output[:, top_offset, :, :], 0.)
        for bottom_offset in [-1, -2]:
            assert_allclose(np_output[:, bottom_offset, :, :], 0.)
        for left_offset in [0, 1, 2]:
            assert_allclose(np_output[:, :, left_offset, :], 0.)
        for right_offset in [-1, -2, -3, -4]:
            assert_allclose(np_output[:, :, right_offset, :], 0.)
        assert_allclose(np_output[:, 1:-2, 3:-4, :], 1.)
    elif dim_ordering == 'th':
        for top_offset in [0]:
            assert_allclose(np_output[:, :, top_offset, :], 0.)
        for bottom_offset in [-1, -2]:
            assert_allclose(np_output[:, :, bottom_offset, :], 0.)
        for left_offset in [0, 1, 2]:
            assert_allclose(np_output[:, :, :, left_offset], 0.)
        for right_offset in [-1, -2, -3, -4]:
            assert_allclose(np_output[:, :, :, right_offset], 0.)
        assert_allclose(np_output[:, :, 1:-2, 3:-4], 1.)
    layer.get_config()
Пример #35
0
            mask_tensor[i, :, :] = mask
        else:
            mask_tensor[:, :, i] = mask

    return mask_tensor


def pooling_func(x):
    if pooltype == 1:
        return AveragePooling2D((2, 2), strides=(2, 2))(x)
    else:
        return MaxPooling2D((2, 2), strides=(2, 2))(x)


# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path, True, read_mode=read_mode))

style_reference_images = []
for style_path in style_image_paths:
    style_reference_images.append(K.variable(preprocess_image(style_path)))

# this will contain our generated image
if K.image_dim_ordering() == 'th':
    combination_image = K.placeholder((1, 3, img_width, img_height))
else:
    combination_image = K.placeholder((1, img_width, img_height, 3))

image_tensors = [base_image]
for style_image_tensor in style_reference_images:
    image_tensors.append(style_image_tensor)
image_tensors.append(combination_image)
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    x = x[:, :, ::-1]  #BGR---> RGB
    x = np.clip(x, 0, 255).astype('uint8')
    return x


from keras import backend as K

target_image = K.variable(preprocess_image(target_image_path))
style_reference_image = K.variable(
    preprocess_image(style_reference_image_path))
if K.image_data_format() == 'channels_first':
    combination_image = K.placeholder((1, 3, img_nrows, img_ncols))
else:
    combination_image = K.placeholder((1, img_nrows, img_ncols, 3))
#combination_image = K.placeholder((1,img_height,img_width,3))
input_tensor = K.concatenate(
    [target_image, style_reference_image, combination_image], axis=0)
model = vgg19.VGG19(input_tensor=input_tensor,
                    weights='imagenet',
                    include_top=False)


#定义内容loss
def my_init(shape, name=None):
    value = np.random.random(shape)
    return K.variable(value, name=name)
Пример #38
0
def tybalt_2layer_model(
        learning_rate,
        batch_size,
        epochs,
        kappa,
        intermediate_dim,
        latent_dim,
        epsilon_std,
        rnaseq,
        base_dir,
        analysis_name):
    """
    Train 2-layer Tybalt model using input dataset

    Arguments
    ----------
    learning_rate: float
    	Step size used for gradient descent. In other words, it's how quickly the  methods is learning
    
    batch_size: int
    	Training is performed in batches. So this determines the number of samples to consider at a given time.
    
    epochs: int
    	The number of times to train over the entire input dataset.
    
    kappa: float
    	How fast to linearly ramp up KL loss 
    
    intermediate_dim: int
    	Size of the hidden layer
    
    latent_dim: int
    	Size of the bottleneck layer
    
    epsilon_std: float
    	Standard deviation of Normal distribution to sample latent space
    
    rnaseq: pandas.dataframe 
    	Gene expression data

    base_dir: str
    	Parent directory where data/, scripts/, models/ are subdirectories
    
    analysis_name: str
    	Name that will be used to create a subdirectory where results and models will be stored

    Returns
    --------
    model_decoder_file, weights_decoder_file: .h5 file
    	Files used to generate decoding neural networks to use in downstream analysis

    model_encoder_file, weights_encoder_file: .h5 file
    	Files used to generate encoding neural networks to use in downstream analysis

    encoded_file: .txt file
    	File containing input data encoded into latent space using encoder neural network
    
    """

    # The below is necessary in Python 3.2.3 onwards to
    # have reproducible behavior for certain hash-based operations.
    # See these references for further details:
    # https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED
    # https://github.com/keras-team/keras/issues/2280#issuecomment-306959926
    randomState = 123
    import os
    os.environ['PYTHONHASHSEED'] = '0'

    # The below is necessary for starting Numpy generated random numbers
    # in a well-defined initial state.

    np.random.seed(42)

    # The below is necessary for starting core Python generated random numbers
    # in a well-defined state.

    rn.seed(12345)

    # Force TensorFlow to use single thread.
    # Multiple threads are a potential source of
    # non-reproducible results.
    # For further details, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res

    session_conf = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)

    from keras import backend as K

    # The below tf.set_random_seed() will make random number generation
    # in the TensorFlow backend have a well-defined initial state.
    # For further details, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed

    tf.set_random_seed(1234)

    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    K.set_session(sess)

    # Load rnaseq data
    rnaseq = rnaseq

    # Initialize hyper parameters

    original_dim = rnaseq.shape[1]
    beta = K.variable(0)

    stat_file = os.path.join(
        base_dir,
        "output",
        "stats",
        analysis_name,
        "tybalt_2layer_{}latent_stats.tsv".format(latent_dim))

    hist_plot_file = os.path.join(
        base_dir,
        "output",
        "viz",
        analysis_name,
        "tybalt_2layer_{}latent_hist.png".format(latent_dim))

    encoded_file = os.path.join(
        base_dir,
        "data",
        "encoded",
        analysis_name,
        "train_input_2layer_{}latent_encoded.txt".format(latent_dim))

    model_encoder_file = os.path.join(
        base_dir,
        "models",
        analysis_name,
        "tybalt_2layer_{}latent_encoder_model.h5".format(latent_dim))

    weights_encoder_file = os.path.join(
        base_dir,
        "models",
        analysis_name,
        "tybalt_2layer_{}latent_encoder_weights.h5".format(latent_dim))

    model_decoder_file = os.path.join(
        base_dir,
        "models",
        analysis_name,
        "tybalt_2layer_{}latent_decoder_model.h5".format(latent_dim))

    weights_decoder_file = os.path.join(
        base_dir,
        "models",
        analysis_name,
        "tybalt_2layer_{}latent_decoder_weights.h5".format(latent_dim))

    # Data initalizations

    # Split 10% test set randomly
    test_set_percent = 0.1
    rnaseq_test_df = rnaseq.sample(
        frac=test_set_percent, random_state=randomState)
    rnaseq_train_df = rnaseq.drop(rnaseq_test_df.index)

    # Create a placeholder for an encoded (original-dimensional)
    rnaseq_input = Input(shape=(original_dim, ))

    # Architecture of VAE

    # ENCODER

    # Input layer is compressed into a mean and log variance vector of size
    # `latent_dim`. Each layer is initialized with glorot uniform weights and each
    # step (dense connections, batch norm,and relu activation) are funneled
    # separately
    # Each vector of length `latent_dim` are connected to the rnaseq input tensor

    # "z_mean_dense_linear" is the encoded representation of the input
    #    Take as input arrays of shape (*, original dim) and output arrays of shape (*, latent dim)
    #    Combine input from previous layer using linear summ
    # Normalize the activations (combined weighted nodes of the previous layer)
    #   Transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.
    # Apply ReLU activation function to combine weighted nodes from previous layer
    #   relu = threshold cutoff (cutoff value will be learned)
    #   ReLU function filters noise

    # X is encoded using Q(z|X) to yield mu(X), sigma(X) that describes latent space distribution
    hidden_dense_linear = Dense(
        intermediate_dim, kernel_initializer='glorot_uniform')(rnaseq_input)
    hidden_dense_batchnorm = BatchNormalization()(hidden_dense_linear)
    hidden_encoded = Activation('relu')(hidden_dense_batchnorm)

    # Note:
    # Normalize and relu filter at each layer adds non-linear component (relu is non-linear function)
    # If architecture is layer-layer-normalization-relu then the computation is still linear
    # Add additional layers in triplicate
    z_mean_dense_linear = Dense(
        latent_dim, kernel_initializer='glorot_uniform')(hidden_encoded)
    z_mean_dense_batchnorm = BatchNormalization()(z_mean_dense_linear)
    z_mean_encoded = Activation('relu')(z_mean_dense_batchnorm)

    z_log_var_dense_linear = Dense(
        latent_dim, kernel_initializer='glorot_uniform')(rnaseq_input)
    z_log_var_dense_batchnorm = BatchNormalization()(z_log_var_dense_linear)
    z_log_var_encoded = Activation('relu')(z_log_var_dense_batchnorm)

    # Customized layer
    # Returns the encoded and randomly sampled z vector
    # Takes two keras layers as input to the custom sampling function layer with a
    # latent_dim` output
    #
    # sampling():
    # randomly sample similar points z from the latent normal distribution that is assumed to generate the data,
    # via z = z_mean + exp(z_log_sigma) * epsilon, where epsilon is a random normal tensor
    # z ~ Q(z|X)
    # Note: there is a trick to reparameterize to standard normal distribution so that the space is differentiable and
    # therefore gradient descent can be used
    #
    # Returns the encoded and randomly sampled z vector
    # Takes two keras layers as input to the custom sampling function layer with a
    # latent_dim` output
    z = Lambda(sampling_maker(epsilon_std),
               output_shape=(latent_dim, ))([z_mean_encoded, z_log_var_encoded])

    # DECODER

    # The decoding layer is much simpler with a single layer glorot uniform
    # initialized and sigmoid activation
    # Reconstruct P(X|z)
    decoder_model = Sequential()
    decoder_model.add(
        Dense(intermediate_dim, activation='relu', input_dim=latent_dim))
    decoder_model.add(Dense(original_dim, activation='sigmoid'))
    rnaseq_reconstruct = decoder_model(z)

    # CONNECTIONS
    # fully-connected network
    adam = optimizers.Adam(lr=learning_rate)
    vae_layer = CustomVariationalLayer(original_dim, z_log_var_encoded, z_mean_encoded, beta)([
        rnaseq_input, rnaseq_reconstruct])
    vae = Model(rnaseq_input, vae_layer)
    vae.compile(optimizer=adam, loss=None, loss_weights=[beta])

    # Training

    # fit Model
    # hist: record of the training loss at each epoch
    hist = vae.fit(
        np.array(rnaseq_train_df),
        shuffle=True,
        epochs=epochs,
        batch_size=batch_size,
        validation_data=(np.array(rnaseq_test_df), None),
        callbacks=[WarmUpCallback(beta, kappa)])

    # Use trained model to make predictions
    encoder = Model(rnaseq_input, z_mean_encoded)

    encoded_rnaseq_df = encoder.predict_on_batch(rnaseq)
    encoded_rnaseq_df = pd.DataFrame(encoded_rnaseq_df, index=rnaseq.index)

    encoded_rnaseq_df.columns.name = 'sample_id'
    encoded_rnaseq_df.columns = encoded_rnaseq_df.columns + 1

    # Visualize training performance
    history_df = pd.DataFrame(hist.history)
    ax = history_df.plot()
    ax.set_xlabel('Epochs')
    ax.set_ylabel('VAE Loss')
    fig = ax.get_figure()
    fig.savefig(hist_plot_file)

    del ax, fig

    # Output

    # Save training performance
    history_df = pd.DataFrame(hist.history)
    history_df = history_df.assign(learning_rate=learning_rate)
    history_df = history_df.assign(batch_size=batch_size)
    history_df = history_df.assign(epochs=epochs)
    history_df = history_df.assign(kappa=kappa)
    history_df.to_csv(stat_file, sep='\t', index=False)

    # Save latent space representation
    encoded_rnaseq_df.to_csv(encoded_file, sep='\t')

    # Save models
    # (source) https://machinelearningmastery.com/save-load-keras-deep-learning-models/
    # Save encoder model
    encoder.save(model_encoder_file)

    # serialize weights to HDF5
    encoder.save_weights(weights_encoder_file)

    # Save decoder model
    # (source) https://github.com/greenelab/tybalt/blob/master/scripts/nbconverted/tybalt_vae.py
    # can generate from any sampled z vector
    decoder_input = Input(shape=(latent_dim, ))
    _x_decoded_mean = decoder_model(decoder_input)
    decoder = Model(decoder_input, _x_decoded_mean)

    decoder.save(model_decoder_file)

    # serialize weights to HDF5
    decoder.save_weights(weights_decoder_file)

    # Save weight matrix:  how each gene contribute to each feature
    # build a generator that can sample from the learned distribution
    # can generate from any sampled z vector
    decoder_input = Input(shape=(latent_dim, ))
    x_decoded_mean = decoder_model(decoder_input)
    decoder = Model(decoder_input, x_decoded_mean)
    weights = []
    for layer in decoder.layers:
        weights.append(layer.get_weights())
Пример #39
0
    def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        self.conv_layers = {c: [] for c in ['i', 'f', 'c', 'o', 'a', 'ahat']}

        for l in range(self.nb_layers):
            for c in ['i', 'f', 'c', 'o']:
                act = self.LSTM_activation if c == 'c' else self.LSTM_inner_activation
                self.conv_layers[c].append(
                    Conv2D(self.R_stack_sizes[l],
                           self.R_filt_sizes[l],
                           padding='same',
                           activation=act,
                           data_format=self.data_format))

            act = 'relu' if l == 0 else self.A_activation
            self.conv_layers['ahat'].append(
                Conv2D(self.stack_sizes[l],
                       self.Ahat_filt_sizes[l],
                       padding='same',
                       activation=act,
                       data_format=self.data_format))

            if l < self.nb_layers - 1:
                self.conv_layers['a'].append(
                    Conv2D(self.stack_sizes[l + 1],
                           self.A_filt_sizes[l],
                           padding='same',
                           activation=self.A_activation,
                           data_format=self.data_format))

        self.upsample = UpSampling2D(data_format=self.data_format)
        self.pool = MaxPooling2D(data_format=self.data_format)

        self.trainable_weights = []
        nb_row, nb_col = (
            input_shape[-2],
            input_shape[-1]) if self.data_format == 'channels_first' else (
                input_shape[-3], input_shape[-2])
        for c in sorted(self.conv_layers.keys()):
            for l in range(len(self.conv_layers[c])):
                ds_factor = 2**l
                if c == 'ahat':
                    nb_channels = self.R_stack_sizes[l]
                elif c == 'a':
                    nb_channels = 2 * self.stack_sizes[l]
                else:
                    nb_channels = self.stack_sizes[l] * 2 + self.R_stack_sizes[
                        l]
                    if l < self.nb_layers - 1:
                        nb_channels += self.R_stack_sizes[l + 1]
                in_shape = (input_shape[0], nb_channels, nb_row // ds_factor,
                            nb_col // ds_factor)
                if self.data_format == 'channels_last':
                    in_shape = (in_shape[0], in_shape[2], in_shape[3],
                                in_shape[1])
                with K.name_scope('layer_' + c + '_' + str(l)):
                    self.conv_layers[c][l].build(in_shape)
                self.trainable_weights += self.conv_layers[c][
                    l].trainable_weights

        self.states = [None] * self.nb_layers * 3

        if self.extrap_start_time is not None:
            self.t_extrap = K.variable(
                self.extrap_start_time,
                int if K.backend() != 'tensorflow' else 'int32')
            self.states += [None] * 2  # [previous frame prediction, timestep]
from keras import backend as K
from keras.regularizers import ActivityRegularizer
import numpy as np

dummy_loss_val = K.variable(0.0)

softminus = lambda x: x - K.softplus(x)


# Dummy loss function which simply returns 0
# This is because we will be training the network using regularizers.
def dummy_loss(y_true, y_pred):
    return dummy_loss_val


def psnr(y_true, y_pred):
    assert y_true.shape == y_pred.shape, "Cannot calculate PSNR. Input shapes not same." \
                                         " y_true shape = %s, y_pred shape = %s" % (str(y_true.shape),
                                                                                   str(y_pred.shape))

    return -10. * np.log10(np.mean(np.square(y_pred - y_true)))


def PSNRLoss(y_true, y_pred):
    """
    PSNR is Peek Signal to Noise Ratio, which is similar to mean squared error.

    It can be calculated as
    PSNR = 20 * log10(MAXp) - 10 * log10(MSE)

    When providing an unscaled input, MAXp = 255. Therefore 20 * log10(255)== 48.1308036087.
Пример #41
0
class weighted_model:
    alpha = 0.6
    epoch_ctr = K.variable(0, name='epoch_ctr')
    ramp_wt = K.variable(0, name='ramp_wt', dtype='float32')
    ramp_period = 300
    weight_max = 1.

    class LossCallback(Callback):
        def on_epoch_end(self, epoch, logs={}):
            weighted_model.epoch_ctr = epoch
            print(weighted_model.epoch_ctr)
            weighted_model.ramp_wt = ramp_up_weight(weighted_model.ramp_period,
                                                    weighted_model.weight_max,
                                                    epoch)

    def dice_coef(self, y_true, y_pred, smooth=1.):

        y_true_f = K.flatten(y_true)
        y_pred_f = K.flatten(y_pred)
        intersection = K.sum(y_true_f * y_pred_f)

        return (2. * intersection + smooth) / (K.sum(y_true_f) +
                                               K.sum(y_pred_f) + smooth)

    def dice_tb(
        self,
        input,
        class_wt=1.,
    ):
        def dice_loss(y_true, y_pred, smooth=1., axis=(1, 2, 3)):
            supervised_flag = input[1, :, :, :, :]
            unsupervised_gt = input[0, :, :, :, :]
            alpha = 0.6
            # unsupervised_gt = unsupervised_gt / (1 - alpha ** (self.epoch_ctr + 1))
            y_true_final = tf.where(tf.equal(supervised_flag, 2),
                                    unsupervised_gt, y_true)
            supervised_flag = tf.where(tf.equal(supervised_flag, 2),
                                       K.ones_like(supervised_flag),
                                       supervised_flag)
            y_true = y_true_final * supervised_flag
            y_pred = y_pred * supervised_flag

            intersection = K.sum(y_true * y_pred, axis=axis)
            y_true_sum = K.sum(y_true, axis=axis)
            y_pred_sum = K.sum(y_pred, axis=axis)

            sign_pred = tf.where(tf.greater(y_pred, 0), K.ones_like(y_pred),
                                 K.zeros_like(y_pred))
            if tf.greater(intersection, 0) is not None:
                c = K.sum(y_true * y_pred) / (K.sum(y_true * sign_pred) +
                                              K.epsilon())
            else:
                c = 1

            return -K.mean((2. * intersection + smooth) /
                           ((c * y_pred_sum) + y_true_sum + smooth))

        return dice_loss

    def c_reg_dice_loss(self, input):
        def dice_loss(y_true, y_pred, smooth=1., axis=(1, 2, 3)):
            supervised_flag = input[1, :, :, :, :]
            y_true = y_true * supervised_flag
            y_pred = y_pred * supervised_flag

            intersection = K.sum(y_true * y_pred, axis=axis)
            y_true_sum = K.sum(y_true, axis=axis)
            y_pred_sum = K.sum(y_pred, axis=axis)

            sign_pred = tf.where(tf.greater(y_pred, 0), K.ones_like(y_pred),
                                 K.zeros_like(y_pred))
            if tf.greater(intersection, 0) is not None:
                c = K.sum(y_true * y_pred) / (K.sum(y_true * sign_pred) +
                                              K.epsilon())
            else:
                c = 1

            return -K.mean((2. * intersection + smooth) /
                           ((c * y_pred_sum) + y_true_sum + smooth))

        return dice_loss

    def c_dice_loss(self, y_true, y_pred, weight, smooth=1.):

        y_true = y_true * weight
        y_pred = y_pred * weight

        intersection = K.sum(y_true * y_pred)
        y_true_sum = K.sum(y_true)
        y_pred_sum = K.sum(y_pred)

        return -K.mean((2. * intersection + smooth) /
                       ((y_pred_sum) + y_true_sum + smooth))

    def unsup_dice_tb(self, input, class_wt=1.):
        unsupervised_gt = input

        # unsupervised_gt = unsupervised_gt / (1 -  (0.6** (self.epoch_ctr + 1)))

        def unsup_dice_loss(y_true, y_pred, smooth=1., axis=(1, 2, 3)):
            y_true = unsupervised_gt
            y_pred = y_pred

            intersection = K.sum(y_true * y_pred, axis=axis)
            y_true_sum = K.sum(y_true, axis=axis)
            y_pred_sum = K.sum(y_pred, axis=axis)

            sign_pred = tf.where(tf.greater(y_pred, 0), K.ones_like(y_pred),
                                 K.zeros_like(y_pred))
            if tf.greater(intersection, 0) is not None:
                c = K.sum(y_true * y_pred) / (K.sum(y_true * sign_pred) +
                                              K.epsilon())
            else:
                c = 1

            avg_dice_coef = K.mean((2. * intersection + smooth) /
                                   ((c * y_pred_sum) + y_true_sum + smooth))

            return 1 - avg_dice_coef

        return unsup_dice_loss

    def dice_loss(self, y_true, y_pred, weight, smooth=1., axis=(1, 2, 3)):

        y_true = y_true * weight
        y_pred = y_pred * weight

        intersection = K.sum(y_true * y_pred, axis=axis)
        y_true_sum = K.sum(y_true, axis=axis)
        y_pred_sum = K.sum(y_pred, axis=axis)

        avg_dice_coef = K.mean(
            (2. * intersection + smooth) / (y_true_sum + y_pred_sum + smooth))

        return -avg_dice_coef

    def unsup_dice_loss(self,
                        y_true,
                        y_pred,
                        weight,
                        smooth=1.,
                        axis=(1, 2, 3)):

        y_true = y_true
        y_pred = y_pred

        intersection = K.sum(y_true * y_pred, axis=axis)
        y_true_sum = K.sum(y_true, axis=axis)
        y_pred_sum = K.sum(y_pred, axis=axis)

        avg_dice_coef = K.mean(
            (2. * intersection + smooth) / (y_true_sum + y_pred_sum + smooth))

        return 1 - avg_dice_coef

    def unsup_c_dice_loss(self, y_true, y_pred, smooth=1., axis=(1, 2, 3)):

        intersection = K.sum(y_true * y_pred, axis=axis)
        y_true_sum = K.sum(y_true, axis=axis)
        y_pred_sum = K.sum(y_pred, axis=axis)

        sign_pred = tf.where(tf.greater(y_pred, 0), K.ones_like(y_pred),
                             K.zeros_like(y_pred))
        if tf.greater(intersection, 0) is not None:
            c = K.sum(
                y_true * y_pred) / (K.sum(y_true * sign_pred) + K.epsilon())
        else:
            c = 1

        avg_dice_coef = K.mean((2. * intersection + smooth) /
                               ((c * y_pred_sum) + y_true_sum + smooth))

        # return 1 / (1 + avg_dice_coef)
        return 1 - avg_dice_coef

    def semi_supervised_loss(self, input, unsup_loss_class_wt=1., alpha=0.6):
        def loss_func(y_true, y_pred):
            print(K.eval(self.epoch_ctr))

            unsupervised_gt = input
            unsupervised_gt = unsupervised_gt / (1 -
                                                 alpha**(self.epoch_ctr + 1))

            # supervised_loss =  self.c_dice_loss(y_true, y_pred, supervised_flag)
            supervised_loss = -self.dice_coef(y_true, y_pred)
            r = weighted_model.ramp_wt
            unsupervised_loss = r * self.unsup_c_dice_loss(
                unsupervised_gt, y_pred)

            return supervised_loss + unsup_loss_class_wt * unsupervised_loss

        return loss_func

    def downLayer(self, inputLayer, filterSize, i, bn=False):
        conv = Conv3D(filterSize, (3, 3, 3),
                      activation='relu',
                      padding='same',
                      name='conv' + str(i) + '_1')(inputLayer)
        if bn:
            conv = BatchNormalization()(conv)
        conv = Conv3D(filterSize * 2, (3, 3, 3),
                      activation='relu',
                      padding='same',
                      name='conv' + str(i) + '_2')(conv)
        if bn:
            conv = BatchNormalization()(conv)
        pool = MaxPooling3D(pool_size=(1, 2, 2))(conv)

        return pool, conv

    def upLayer(self,
                inputLayer,
                concatLayer,
                filterSize,
                i,
                bn=False,
                do=False):
        up = Conv3DTranspose(filterSize, (2, 2, 2),
                             strides=(1, 2, 2),
                             activation='relu',
                             padding='same',
                             name='up' + str(i))(inputLayer)
        # print( concatLayer.shape)
        up = concatenate([up, concatLayer])
        conv = Conv3D(int(filterSize / 2), (3, 3, 3),
                      activation='relu',
                      padding='same',
                      name='conv' + str(i) + '_1')(up)
        if bn:
            conv = BatchNormalization()(conv)
        if do:
            conv = Dropout(0.5, seed=3, name='Dropout_' + str(i))(conv)
        conv = Conv3D(int(filterSize / 2), (3, 3, 3),
                      activation='relu',
                      padding='same',
                      name='conv' + str(i) + '_2')(conv)
        if bn:
            conv = BatchNormalization()(conv)

        return conv

    def build_model(self,
                    img_shape=(32, 168, 168),
                    learning_rate=5e-5,
                    gpu_id=None,
                    nb_gpus=None):
        input_img = Input((*img_shape, 1), name='img_inp')
        unsupervised_label = Input((*img_shape, 5), name='unsup_label_inp')
        # supervised_flag = Input(shape=img_shape, name='flag_inp')

        kernel_init = 'he_normal'
        sfs = 16  # start filter size
        bn = True
        do = True
        conv1, conv1_b_m = self.downLayer(input_img, sfs, 1, bn)
        conv2, conv2_b_m = self.downLayer(conv1, sfs * 2, 2, bn)

        conv3 = Conv3D(sfs * 4, (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv' + str(3) + '_1')(conv2)
        if bn:
            conv3 = BatchNormalization()(conv3)
        conv3 = Conv3D(sfs * 8, (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv' + str(3) + '_2')(conv3)
        if bn:
            conv3 = BatchNormalization()(conv3)
        pool3 = MaxPooling3D(pool_size=(2, 2, 2))(conv3)
        # conv3, conv3_b_m = downLayer(conv2, sfs*4, 3, bn)

        conv4 = Conv3D(sfs * 16, (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv4_1')(pool3)
        if bn:
            conv4 = BatchNormalization()(conv4)
        if do:
            conv4 = Dropout(0.5, seed=4, name='Dropout_' + str(4))(conv4)
        conv4 = Conv3D(sfs * 16, (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv4_2')(conv4)
        if bn:
            conv4 = BatchNormalization()(conv4)

        # conv5 = upLayer(conv4, conv3_b_m, sfs*16, 5, bn, do)
        up1 = Conv3DTranspose(sfs * 16, (2, 2, 2),
                              strides=(2, 2, 2),
                              activation='relu',
                              padding='same',
                              name='up' + str(5))(conv4)
        up1 = concatenate([up1, conv3])
        conv5 = Conv3D(int(sfs * 8), (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv' + str(5) + '_1')(up1)
        if bn:
            conv5 = BatchNormalization()(conv5)
        if do:
            conv5 = Dropout(0.5, seed=5, name='Dropout_' + str(5))(conv5)
        conv5 = Conv3D(int(sfs * 8), (3, 3, 3),
                       activation='relu',
                       padding='same',
                       kernel_initializer=kernel_init,
                       name='conv' + str(5) + '_2')(conv5)
        if bn:
            conv5 = BatchNormalization()(conv5)

        conv6 = self.upLayer(conv5, conv2_b_m, sfs * 8, 6, bn, do)
        conv7 = self.upLayer(conv6, conv1_b_m, sfs * 4, 7, bn, do)

        conv_out = Conv3D(5, (1, 1, 1), name='conv_final_softmax')(conv7)

        # conv_out = Lambda(lambda x: x / temp, name='scaling')(conv_out)
        conv_out_sm = Activation('softmax')(conv_out)

        pz_sm_out = Lambda(lambda x: x[:, :, :, :, 0], name='pz')(conv_out_sm)
        cz_sm_out = Lambda(lambda x: x[:, :, :, :, 1], name='cz')(conv_out_sm)
        us_sm_out = Lambda(lambda x: x[:, :, :, :, 2], name='us')(conv_out_sm)
        afs_sm_out = Lambda(lambda x: x[:, :, :, :, 3],
                            name='afs')(conv_out_sm)
        bg_sm_out = Lambda(lambda x: x[:, :, :, :, 4], name='bg')(conv_out_sm)

        pz_ensemble_pred = Lambda(lambda x: x[:, :, :, :, 0],
                                  name='pzu')(unsupervised_label)
        cz_ensemble_pred = Lambda(lambda x: x[:, :, :, :, 1],
                                  name='czu')(unsupervised_label)
        us_ensemble_pred = Lambda(lambda x: x[:, :, :, :, 2],
                                  name='usu')(unsupervised_label)
        afs_ensemble_pred = Lambda(lambda x: x[:, :, :, :, 3],
                                   name='afsu')(unsupervised_label)
        bg_ensemble_pred = Lambda(lambda x: x[:, :, :, :, 4],
                                  name='bgu')(unsupervised_label)
        optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999)

        if (nb_gpus is None):
            p_model = Model(
                [input_img, unsupervised_label],
                [pz_sm_out, cz_sm_out, us_sm_out, afs_sm_out, bg_sm_out])

            p_model.compile(
                optimizer=optimizer,
                loss={
                    'pz':
                    self.semi_supervised_loss(pz_ensemble_pred,
                                              unsup_loss_class_wt=1),
                    'cz':
                    self.semi_supervised_loss(cz_ensemble_pred, 1),
                    'us':
                    self.semi_supervised_loss(us_ensemble_pred, 2),
                    'afs':
                    self.semi_supervised_loss(afs_ensemble_pred, 2),
                    'bg':
                    self.semi_supervised_loss(bg_ensemble_pred, 1)
                },
                metrics={
                    'pz':
                    [self.dice_coef,
                     self.unsup_dice_tb(pz_ensemble_pred, 1)],
                    'cz':
                    [self.dice_coef,
                     self.unsup_dice_tb(cz_ensemble_pred, 1)],
                    'us':
                    [self.dice_coef,
                     self.unsup_dice_tb(us_ensemble_pred, 2)],
                    'afs':
                    [self.dice_coef,
                     self.unsup_dice_tb(afs_ensemble_pred, 2)],
                    'bg':
                    [self.dice_coef,
                     self.unsup_dice_tb(bg_ensemble_pred, 1)]
                })
        else:
            with tf.device(gpu_id):
                model = Model(
                    [input_img, unsupervised_label],
                    [pz_sm_out, cz_sm_out, us_sm_out, afs_sm_out, bg_sm_out])

                p_model = multi_gpu_model(model, gpus=nb_gpus)

                p_model.compile(
                    optimizer=optimizer,
                    loss={
                        'pz':
                        self.semi_supervised_loss(pz_ensemble_pred,
                                                  unsup_loss_class_wt=1),
                        'cz':
                        self.semi_supervised_loss(cz_ensemble_pred, 1),
                        'us':
                        self.semi_supervised_loss(us_ensemble_pred, 2),
                        'afs':
                        self.semi_supervised_loss(afs_ensemble_pred, 2),
                        'bg':
                        self.semi_supervised_loss(bg_ensemble_pred, 1)
                    },
                    metrics={
                        'pz': [
                            self.dice_coef,
                            self.unsup_dice_tb(pz_ensemble_pred, 1)
                        ],
                        'cz': [
                            self.dice_coef,
                            self.unsup_dice_tb(cz_ensemble_pred, 1)
                        ],
                        'us': [
                            self.dice_coef,
                            self.unsup_dice_tb(us_ensemble_pred, 2)
                        ],
                        'afs': [
                            self.dice_coef,
                            self.unsup_dice_tb(afs_ensemble_pred, 2)
                        ],
                        'bg': [
                            self.dice_coef,
                            self.unsup_dice_tb(bg_ensemble_pred, 1)
                        ]
                    },
                    loss_weights={
                        'pz': 1,
                        'cz': 1,
                        'us': 2,
                        'afs': 2,
                        'bg': 1
                    })

        return p_model
Пример #42
0
def get_base_image(img_nrows, img_ncols):
    return K.variable(load_image("../images/mat.jpg", img_nrows, img_ncols))
Пример #43
0
 def __init__(self, weights):
     self.config = {'weights': list(weights)}
     self.length = len(weights)
     self.weights = K.variable(weights, name='acc_weights')
     self.__name__ = 'waccOA'
Пример #44
0
def get_style_image(img_nrows, img_ncols):
    return K.variable(load_image("../images/munch.jpg", img_nrows, img_ncols))
Пример #45
0
 def build(self, input_shape):
     initial_weight_value = np.random.random_sample(
         (int(input_shape[1]), int(input_shape[2])))
     self.W = K.variable(initial_weight_value)
     self.trainable_weights = [self.W]
Пример #46
0
    def call(self, x, mask=None):
        # TODO: validate input shape

        assert (len(x) == 3)
        L_flat = x[0]
        mu = x[1]
        a = x[2]

        if self.mode == 'full':
            # Create L and L^T matrix, which we use to construct the positive-definite matrix P.
            L = None
            LT = None
            if K.backend() == 'theano':
                import theano.tensor as T
                import theano

                def fn(x, L_acc, LT_acc):
                    x_ = K.zeros((self.nb_actions, self.nb_actions))
                    x_ = T.set_subtensor(x_[np.tril_indices(self.nb_actions)], x)
                    diag = K.exp(T.diag(x_)) + K.epsilon()
                    x_ = T.set_subtensor(x_[np.diag_indices(self.nb_actions)], diag)
                    return x_, x_.T

                outputs_info = [
                    K.zeros((self.nb_actions, self.nb_actions)),
                    K.zeros((self.nb_actions, self.nb_actions)),
                ]
                results, _ = theano.scan(fn=fn, sequences=L_flat, outputs_info=outputs_info)
                L, LT = results
            elif K.backend() == 'tensorflow':
                import tensorflow as tf

                # Number of elements in a triangular matrix.
                nb_elems = (self.nb_actions * self.nb_actions + self.nb_actions) // 2

                # Create mask for the diagonal elements in L_flat. This is used to exponentiate
                # only the diagonal elements, which is done before gathering.
                diag_indeces = [0]
                for row in range(1, self.nb_actions):
                    diag_indeces.append(diag_indeces[-1] + (row + 1))
                diag_mask = np.zeros(1 + nb_elems)  # +1 for the leading zero
                diag_mask[np.array(diag_indeces) + 1] = 1
                diag_mask = K.variable(diag_mask)

                # Add leading zero element to each element in the L_flat. We use this zero
                # element when gathering L_flat into a lower triangular matrix L.
                nb_rows = tf.shape(L_flat)[0]
                zeros = tf.expand_dims(tf.tile(K.zeros((1,)), [nb_rows]), 1)
                try:
                    # Old TF behavior.
                    L_flat = tf.concat(1, [zeros, L_flat])
                except TypeError:
                    # New TF behavior
                    L_flat = tf.concat([zeros, L_flat], 1)

                # Create mask that can be used to gather elements from L_flat and put them
                # into a lower triangular matrix.
                tril_mask = np.zeros((self.nb_actions, self.nb_actions), dtype='int32')
                tril_mask[np.tril_indices(self.nb_actions)] = range(1, nb_elems + 1)

                # Finally, process each element of the batch.
                init = [
                    K.zeros((self.nb_actions, self.nb_actions)),
                    K.zeros((self.nb_actions, self.nb_actions)),
                ]

                def fn(a, x):
                    # Exponentiate everything. This is much easier than only exponentiating
                    # the diagonal elements, and, usually, the action space is relatively low.
                    x_ = K.exp(x) + K.epsilon()
                    # Only keep the diagonal elements.
                    x_ *= diag_mask
                    # Add the original, non-diagonal elements.
                    x_ += x * (1. - diag_mask)
                    # Finally, gather everything into a lower triangular matrix.
                    L_ = tf.gather(x_, tril_mask)
                    return [L_, tf.transpose(L_)]

                tmp = tf.scan(fn, L_flat, initializer=init)
                if isinstance(tmp, (list, tuple)):
                    # TensorFlow 0.10 now returns a tuple of tensors.
                    L, LT = tmp
                else:
                    # Old TensorFlow < 0.10 returns a shared tensor.
                    L = tmp[:, 0, :, :]
                    LT = tmp[:, 1, :, :]
            else:
                raise RuntimeError('Unknown Keras backend "{}".'.format(K.backend()))
            assert L is not None
            assert LT is not None
            P = K.batch_dot(L, LT)
        elif self.mode == 'diag':
            if K.backend() == 'theano':
                import theano.tensor as T
                import theano

                def fn(x, P_acc):
                    x_ = K.zeros((self.nb_actions, self.nb_actions))
                    x_ = T.set_subtensor(x_[np.diag_indices(self.nb_actions)], x)
                    return x_

                outputs_info = [
                    K.zeros((self.nb_actions, self.nb_actions)),
                ]
                P, _ = theano.scan(fn=fn, sequences=L_flat, outputs_info=outputs_info)
            elif K.backend() == 'tensorflow':
                import tensorflow as tf

                # Create mask that can be used to gather elements from L_flat and put them
                # into a diagonal matrix.
                diag_mask = np.zeros((self.nb_actions, self.nb_actions), dtype='int32')
                diag_mask[np.diag_indices(self.nb_actions)] = range(1, self.nb_actions + 1)

                # Add leading zero element to each element in the L_flat. We use this zero
                # element when gathering L_flat into a lower triangular matrix L.
                nb_rows = tf.shape(L_flat)[0]
                zeros = tf.expand_dims(tf.tile(K.zeros((1,)), [nb_rows]), 1)
                try:
                    # Old TF behavior.
                    L_flat = tf.concat(1, [zeros, L_flat])
                except TypeError:
                    # New TF behavior
                    L_flat = tf.concat([zeros, L_flat], 1)

                # Finally, process each element of the batch.
                def fn(a, x):
                    x_ = tf.gather(x, diag_mask)
                    return x_

                P = tf.scan(fn, L_flat, initializer=K.zeros((self.nb_actions, self.nb_actions)))
            else:
                raise RuntimeError('Unknown Keras backend "{}".'.format(K.backend()))
        assert P is not None
        assert K.ndim(P) == 3

        # Combine a, mu and P into a scalar (over the batches). What we compute here is
        # -.5 * (a - mu)^T * P * (a - mu), where * denotes the dot-product. Unfortunately
        # TensorFlow handles vector * P slightly suboptimal, hence we convert the vectors to
        # 1xd/dx1 matrices and finally flatten the resulting 1x1 matrix into a scalar. All
        # operations happen over the batch size, which is dimension 0.
        prod = K.batch_dot(K.expand_dims(a - mu, 1), P)
        prod = K.batch_dot(prod, K.expand_dims(a - mu, -1))
        A = -.5 * K.batch_flatten(prod)
        assert K.ndim(A) == 2
        return A
Пример #47
0
import copy
from keras import backend as K
from keras.losses import binary_crossentropy, categorical_crossentropy, mse
from keras.models import Model, load_model
from keras.layers import Input, Dense, Lambda, Concatenate, Reshape
from keras.layers.core import Dense, Activation, Flatten, RepeatVector
from keras.layers.wrappers import TimeDistributed
from keras.layers.recurrent import GRU
from keras.layers.convolutional import Convolution1D
import tensorflow as tf
import zinc_grammar as G

masks_K = K.variable(G.masks)
ind_of_ind_K = K.variable(G.ind_of_ind)

MAX_LEN = 277
MAX_LEN_FUNCTIONAL = 200
DIM = G.D


class MoleculeVAE():
    autoencoder = None

    def create(self,
               charset,
               max_length=MAX_LEN,
               max_length_functional=MAX_LEN_FUNCTIONAL,
               latent_rep_size=2,
               weights_file=None):
        charset_length = len(charset)
Пример #48
0
  if K.image_data_format() == 'channels_first':
      x = x.reshape((3, img_nrows, img_ncols))
      x = x.transpose((1, 2, 0))
  else:
      x = x.reshape((img_nrows, img_ncols, 3))
  # Remove zero-center by mean pixel
  x[:, :, 0] += 103.939
  x[:, :, 1] += 116.779
  x[:, :, 2] += 123.68
  # 'BGR'->'RGB'
  x = x[:, :, ::-1]
  x = np.clip(x, 0, 255).astype('uint8')
  return x

# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))

# this will contain our generated image
if K.image_data_format() == 'channels_first':
  combination_image = K.placeholder((1, 3, img_nrows, img_ncols))
else:
  combination_image = K.placeholder((1, img_nrows, img_ncols, 3))

# combine the 3 images into a single Keras tensor
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)

# build the VGG19 network with our 3 images as input
# the model will be loaded with pre-trained ImageNet weights
model = vgg19.VGG19(input_tensor=input_tensor, weights='imagenet', include_top=False)
print('Model loaded.')
Пример #49
0
    training_generator.min_randomized_snr_db = min_randomized_snr_db
    training_generator.max_randomized_snr_db = max_randomized_snr_db
else:
    training_generator.randomize_SNR = True
    training_generator.SNRdB = 0

input_train, output_train = training_generator.get_examples(
    num_training_examples)
input_val, output_val = training_generator.get_examples(
    num_validation_examples)

global H_normalization_factor
H_normalization_factor = np.sqrt(Nr * Nt)

global K_H_normalization_factor
K_H_normalization_factor = K.variable(H_normalization_factor, dtype=np.float32)

if False:
    # real / compl as new dimension
    input_shape = (Nr, numSamplesPerExample, 2)
    output_dim = (Nr, Nt, 2)
else:
    # real / compl as twice number of rows
    input_shape = (numSamplesPerExample, 2 * (Nr))
    output_dim = (2 * Nr, Nt)

numInputs = np.prod(input_shape)
numOutputs = np.prod(output_dim)
print(numInputs, " ", numOutputs)

Пример #50
0
    shape = im.shape[1:]

    #AQ UNDA AIRCHIO ROMELI CONV LAYERIDAN GINDA AGEBA

    vgg_model = custom_vgg(shape, 13)

    symbolic_conv_outputs = [
        layer.get_output_at(1) for layer in vgg_model.layers
        if layer.name.endswith('conv1')
    ]

    #now are are doing actual model and it also has a good shortcut

    multi_model_output = Model(vgg_model.input, symbolic_conv_outputs)

    layer_outputs = [K.variable(k) for k in multi_model_output.predict(im)]
    loss = 0

    for symbolic, numerical in zip(symbolic_conv_outputs, layer_outputs):

        loss += style_loss(symbolic[0], numerical[0])

    grad = K.gradients(loss, multi_model_output.input)

    loss_grad = K.function(inputs=[multi_model_output.input],
                           outputs=[loss] + grad)

    img = minimize(wrapper, 10, batch_shape)
    img = process(img)
    plt.imshow(img)
  symbolic_conv_outputs = [
    layer.get_output_at(1) for layer in vgg.layers \
    if layer.name.endswith('conv1')
  ]

  # pick the earlier layers for
  # a more "localized" representation
  # this is opposed to the content model
  # where the later layers represent a more "global" structure
  # symbolic_conv_outputs = symbolic_conv_outputs[:2]

  # make a big model that outputs multiple layers' outputs
  multi_output_model = Model(vgg.input, symbolic_conv_outputs)

  # calculate the targets that are output at each layer
  style_layers_outputs = [K.variable(y) for y in multi_output_model.predict(x)]

  # calculate the total style loss
  loss = 0
  for symbolic, actual in zip(symbolic_conv_outputs, style_layers_outputs):
    # gram_matrix() expects a (H, W, C) as input
    loss += style_loss(symbolic[0], actual[0])

  grads = K.gradients(loss, multi_output_model.input)

  # just like theano.function
  get_loss_and_grads = K.function(
    inputs=[multi_output_model.input],
    outputs=[loss] + grads
  )
K.set_learning_phase(0)

model = inception_v3.InceptionV3(weights='imagenet', include_top=False)

#勾配率
layer_contributions = {
    'mixed2': 0.4,
    'mixed3': 3.,
    'mixed4': 2.,
    'mixed5': 1.5,
}

layer_dict = dict([(layer.name, layer) for layer in model.layers])

loss = K.variable(0.)
for layer_name in layer_contributions:
    coeff = layer_contributions[layer_name]

    activation = layer_dict[layer_name].output

    scaling = K.prod(K.cast(K.shape(activation), 'float32'))

    loss += coeff * K.sum(K.square(activation[:, 2:-2, 2:-2, :])) / scaling

#生成された画像(dream)を保持するテンソル
dream = model.input

#ドリームの損失関数の勾配を計算
grads = K.gradients(loss, dream)[0]
Пример #53
0
 def __init__(self, weights, unsuper_weight=0, unsuper_channel=-1):
     self.config = {'weights': list(weights), 'unsuper_weight':unsuper_weight, 'unsuper_channel':unsuper_channel}
     self.unsuper_weight = K.variable(unsuper_weight)
     self.supervised_loss = wcceOA(weights)
     self.unsupervised_loss = entrONA(unsuper_channel)
     self.__name__ = 'wlossOA'
Пример #54
0
 def _b_init(self, shape, name=None):
     """Initialize bias as in paper"""
     values = numpy.random.normal(loc=0.5, scale=1e-2, size=shape)
     return K.variable(values, name=name)
Пример #55
0
 def __init__(self):
     self.gamma = K.variable(2.)
Пример #56
0
 def __init__(self, unsuper_channel=-1):
     self.config = {'unsuper_channel': unsuper_channel}
     self.__name__ = 'entrONA'
     self.unsuper_channel = K.variable(unsuper_channel, dtype='int')
Пример #57
0
def unifinv_init(shape, dtype=None):
    return K.variable(stats.uniform.ppf(numpy.random.rand(*shape), loc=-.5, scale=(.5 - -.5)),
                      dtype=dtype)
Пример #58
0
    def call(self, x, mask=None):
        if hasattr(x, '_keras_shape'):
            input_shape = x._keras_shape
        elif hasattr(K, 'int_shape'):
            input_shape = K.int_shape(x)
        # --------------------------------- #
        #   获取输入进来的特征层的宽和高
        #   比如38x38
        # --------------------------------- #
        layer_width = input_shape[self.waxis]
        layer_height = input_shape[self.haxis]

        # --------------------------------- #
        #   获取输入进来的图片的宽和高
        #   比如300x300
        # --------------------------------- #
        img_width = self.img_size[1]
        img_height = self.img_size[0]
        box_widths = []
        box_heights = []
        # --------------------------------- #
        #   self.aspect_ratios一般有两个值
        #   [1, 1, 2, 1/2]
        #   [1, 1, 2, 1/2, 3, 1/3]
        # --------------------------------- #
        for ar in self.aspect_ratios:
            # 首先添加一个较小的正方形
            if ar == 1 and len(box_widths) == 0:
                box_widths.append(self.min_size)
                box_heights.append(self.min_size)
            # 然后添加一个较大的正方形
            elif ar == 1 and len(box_widths) > 0:
                box_widths.append(np.sqrt(self.min_size * self.max_size))
                box_heights.append(np.sqrt(self.min_size * self.max_size))
            # 然后添加长方形
            elif ar != 1:
                box_widths.append(self.min_size * np.sqrt(ar))
                box_heights.append(self.min_size / np.sqrt(ar))

        # --------------------------------- #
        #   获得所有先验框的宽高1/2
        # --------------------------------- #
        box_widths = 0.5 * np.array(box_widths)
        box_heights = 0.5 * np.array(box_heights)

        # --------------------------------- #
        #   每一个特征层对应的步长
        # --------------------------------- #
        step_x = img_width / layer_width
        step_y = img_height / layer_height

        # --------------------------------- #
        #   生成网格中心
        # --------------------------------- #
        linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x,
                           layer_width)
        liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y,
                           layer_height)
        centers_x, centers_y = np.meshgrid(linx, liny)
        centers_x = centers_x.reshape(-1, 1)
        centers_y = centers_y.reshape(-1, 1)

        # 每一个先验框需要两个(centers_x, centers_y),前一个用来计算左上角,后一个计算右下角
        num_priors_ = len(self.aspect_ratios)
        prior_boxes = np.concatenate((centers_x, centers_y), axis=1)
        prior_boxes = np.tile(prior_boxes, (1, 2 * num_priors_))
        
        # 获得先验框的左上角和右下角
        prior_boxes[:, ::4] -= box_widths
        prior_boxes[:, 1::4] -= box_heights
        prior_boxes[:, 2::4] += box_widths
        prior_boxes[:, 3::4] += box_heights

        # --------------------------------- #
        #   将先验框变成小数的形式
        #   归一化
        # --------------------------------- #
        prior_boxes[:, ::2] /= img_width
        prior_boxes[:, 1::2] /= img_height
        prior_boxes = prior_boxes.reshape(-1, 4)

        prior_boxes = np.minimum(np.maximum(prior_boxes, 0.0), 1.0)

        num_boxes = len(prior_boxes)
        
        if len(self.variances) == 1:
            variances = np.ones((num_boxes, 4)) * self.variances[0]
        elif len(self.variances) == 4:
            variances = np.tile(self.variances, (num_boxes, 1))
        else:
            raise Exception('Must provide one or four variances.')

        prior_boxes = np.concatenate((prior_boxes, variances), axis=1)
        prior_boxes_tensor = K.expand_dims(K.variable(prior_boxes), 0)
    
        pattern = [tf.shape(x)[0], 1, 1]
        prior_boxes_tensor = tf.tile(prior_boxes_tensor, pattern)

        return prior_boxes_tensor
Пример #59
0
 def build(self, input_shape):
     self.input_spec = [InputSpec(shape=input_shape)]
     shape = (input_shape[self.axis], )
     init_gamma = self.scale * np.ones(shape)
     self.gamma = K.variable(init_gamma, name='{}_gamma'.format(self.name))
     self.trainable_weights = [self.gamma]
Пример #60
0
def test_sparse_metrics():
    for metric in all_sparse_metrics:
        y_a = K.variable(np.random.randint(0, 7, (6,)), dtype=K.floatx())
        y_b = K.variable(np.random.random((6, 7)), dtype=K.floatx())
        assert K.eval(metric(y_a, y_b)).shape == (6,)