Пример #1
0
    def NetworkTrain(self, model: keras.engine.training.Model, train_x: list,
                     train_y: np.ndarray):
        try:
            print("#######################################\n")
            print("########### Starts Training ###########")

            base_lr = BaseLogger()
            reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                          factor=0.2,
                                          patience=5,
                                          min_lr=self._min_lr,
                                          verbose=self.VERBOSE)
            es = EarlyStopping(monitor='val_loss', mode='min', patience=100)
            #mc = ModelCheckpoint(self.MODEL_DESC+'best_model.h5', monitor='val_acc', mode='max', verbose=1, save_best_only=True)

            return model.fit(train_x,
                             train_y,
                             batch_size=self.BATCH_SIZE,
                             epochs=self.EPOCHS,
                             verbose=self.VERBOSE,
                             shuffle=self.SHUFFLE_DATASET,
                             validation_split=self.VALIDATION_SPLIT,
                             callbacks=[base_lr, reduce_lr, es])
        except Exception as ex:
            template = "An exception of type {0} occurred in [Main.NetworkTrain]. Arguments:\n{1!r}"
            message = template.format(type(ex).__name__, ex.args)
            print(message)
            print(ex)
Пример #2
0
def train(model, X_train, X_test, epochs, batch_size, modeldir, logdir):
    modelpath = modeldir + "/" + "autoencoder_epoch-{epoch:02d}_loss-{loss:.4f}_valloss-{val_loss:.4f}.h5"
    CHK = ModelCheckpoint(filepath=modelpath, verbose=0, save_best_only=True)
    # CHK = ModelCheckpoint(modelpath, monitor="val_kauc", verbose=1, save_best_only=True, save_weights_only=False, mode="max", period=1)
    TB = TensorBoard(log_dir=logdir,
                     histogram_freq=0,
                     write_graph=True,
                     write_images=False)
    ES = EarlyStopping(monitor="val_loss", min_delta=ES_MIN_DELTA, patience=ES_PATIENCE, verbose=2, mode="auto")
    TB = TensorBoard(log_dir=logdir, histogram_freq=0, write_graph=True, write_images=False)
    RLRP = ReduceLROnPlateau(monitor="val_loss", factor=RLRP_FACTOR, patience=RLRP_PATIENCE, min_lr=RLRP_MIN_LR)
    BL = BaseLogger()

    # NOTE: training on X_train/X_train (not Y_train) since autoencoder
    # tries to train only on good data (errors in prediction will be bad values).
    # Similarly, the validation set is X_test/X_test.
    print("X_train: ", X_train.shape)
    print("X_test: ", X_test.shape)
    history = model.fit(X_train, X_train,
                        epochs=epochs, batch_size=batch_size,
                        validation_split=0.2,
                        callbacks=[CHK, ES, RLRP, TB])

    # history = model.fit(
    #             train_x, train_y,
    #             epochs=epochs, batch_size=batch_size,
    #             class_weight=class_weight,
    #             callbacks=[ES, TB, BL, RLRP, roc_callback])

    return history
Пример #3
0
def get_callbacks():

    callbacks = list()

    callbacks.append(EarlyStopping(monitor='val_loss', patience=100,
                                   verbose=1))

    weights_file = os.path.join("weights",
                                "weights_ep_{epoch:02d}_{val_acc:.5f}.hd5f")
    callbacks.append(
        ModelCheckpoint(weights_file,
                        monitor='val_acc',
                        verbose=1,
                        save_best_only=True,
                        mode='max',
                        save_weights_only=True))

    callbacks.append(
        ReduceLROnPlateau(monitor='val_loss',
                          verbose=1,
                          factor=0.3,
                          patience=30,
                          min_lr=MIN_LR))

    callbacks.append(BaseLogger())

    callbacks.append(TensorBoard())

    return callbacks
Пример #4
0
    def fit(self,
            x,
            y,
            epochs=25,
            callbacks=[BaseLogger()],
            validation_split=0.1):

        self.model.fit(x=x,
                       y=y,
                       epochs=epochs,
                       validation_split=validation_split,
                       callbacks=callbacks)
Пример #5
0
    def test_training(self):
        #np.save("resources/XY_train/X_copy.npy", self.X)
        callback = [BaseLogger()]
        model: Model = training(model=self.model,
                                X=self.X,
                                Y=self.Y,
                                callbacks=callback)

        loss, acc = model.evaluate(self.X_dev, self.Y_dev)

        print(acc)  # 9312872886657715
        model.save('resources/model/test_model.h5')
Пример #6
0
    def fit(self, timeseries, lag=7, epochs=10000, verbose=0, optimizer='sgd'):
        self.timeseries = np.array(
            timeseries, dtype="float64"
        )  # Apply log transformation por variance stationarity
        self.lag = lag
        self.y = None
        self.n = len(timeseries)
        if self.lag >= self.n:
            raise ValueError("Lag is higher than length of the timeseries")
        self.X = np.zeros((self.n - self.lag, self.lag), dtype="float64")
        with np.errstate(divide='ignore'):
            self.y = np.log(self.timeseries[self.lag:])

        self.epochs = epochs
        self.scaler = StandardScaler()
        self.verbose = verbose
        self.optimizer = optimizer

        # Building X matrix
        for i in range(0, self.n - lag):
            self.X[i, :] = self.timeseries[range(i, i + lag)]
        #
        # if verbose:
        #     print "Scaling data"
        self.scaler.fit(self.X)
        self.X = self.scaler.transform(self.X)

        # Neural net architecture
        self.nn = Sequential()
        self.nn.add(Dense(self.X.shape[1], self.hidden_layers[0]))
        self.nn.add(Activation(self.activation_functions[0]))
        self.nn.add(Dropout(0.25))

        for i, layer in enumerate(self.hidden_layers[:-1]):
            self.nn.add(Dense(self.hidden_layers[i],
                              self.hidden_layers[i + 1]))
            self.nn.add(Activation(self.activation_functions[i]))
            self.nn.add(Dropout(0.25))

        # Add final node
        self.nn.add(Dense(self.hidden_layers[-1], 1))
        self.nn.compile(loss='mean_absolute_error', optimizer=self.optimizer)

        # Train neural net
        self.nn.fit(self.X,
                    self.y,
                    nb_epoch=self.epochs,
                    verbose=self.verbose,
                    callbacks=[BaseLogger()])
Пример #7
0
    def _load_default_callbacks(self):
        """Return default callbacks automatically applied during training

        By default, the following callbacks are automatically applied during
        training:
        - tensorflow.keras.callbacks.BaseLogger
        - tensorflow.keras.callbacks.ProgbarLogger
        - tensorflow.keras.callbacks.History (which is the `Model.history`
          attribute set in `Model.__init__`)

        :return: callbacks automatically applied to every Model
        :rtype: list
        """

        default_callbacks = [BaseLogger(), self.history]
        return default_callbacks
    def Train(self,
              train_x,
              train_y,
              val_split: float = 0.2,
              eps: int = 20,
              batches: int = 64):
        """
        This method executes the model training process.
            :param train_x: train input
            :param train_y: train desired result
            :param val_split:float: validation split of the train set
            :param eps:int: train epochs
            :param batches:int: the dataset batch size
        """
        try:
            verbose: int = 1
            base_lr = BaseLogger()
            reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                          factor=0.02,
                                          patience=5,
                                          min_lr=0.000125,
                                          verbose=verbose)
            es = EarlyStopping(monitor='val_loss',
                               mode='min',
                               verbose=verbose,
                               patience=75)
            mc = ModelCheckpoint(self._model_folder + 'best_model.h5',
                                 monitor='val_acc',
                                 mode='max',
                                 verbose=verbose,
                                 save_best_only=True)

            return self._model.fit(train_x,
                                   train_y,
                                   validation_split=val_split,
                                   epochs=eps,
                                   batch_size=batches,
                                   shuffle=True,
                                   callbacks=[base_lr, reduce_lr, es, mc])
        except Exception as ex:
            template = "An exception of type {0} occurred in [Model.Train]. Arguments:\n{1!r}"
            message = template.format(type(ex).__name__, ex.args)
            print(message)
Пример #9
0
def fit_lstm(X, y, batch_size, nb_epoch, neurons):
    #X, y = train[:, 0:-1], train[:, -1]
    # X = X.reshape(X.shape[0], 1, X.shape[1])
    # print('X=', X, 'y=', y)
    print('X=', X.shape, 'y=', y.shape)
    model = Sequential()
    model.add(
        LSTM(neurons,
             batch_input_shape=(batch_size, X.shape[1], X.shape[2]),
             stateful=True))
    model.add(Dense(X.shape[2]))
    model.compile(loss='mean_squared_error', optimizer='adam')
    for i in range(nb_epoch):
        print("epoch:", i)
        model.fit(X,
                  y,
                  epochs=1,
                  batch_size=batch_size,
                  verbose=0,
                  shuffle=False,
                  callbacks=[BaseLogger()])
        model.reset_states()
    return model
Пример #10
0
    def _prepare_callbacks(self, callbacks: List[Callback],
                           val_ins: List[numpy.array], epochs: int,
                           batch_size: int, num_train_samples: int,
                           callback_metrics: List[str], do_validation: bool,
                           verbose: int):
        """
        Sets up Keras callbacks to perform various monitoring functions during training.
        """

        self.history = History()  # pylint: disable=attribute-defined-outside-init
        callbacks = [BaseLogger()] + (callbacks or []) + [self.history]
        if verbose:
            callbacks += [ProgbarLogger()]
        callbacks = CallbackList(callbacks)

        # it's possible to callback a different model than self
        # (used by Sequential models).
        if hasattr(self, 'callback_model') and self.callback_model:
            callback_model = self.callback_model
        else:
            callback_model = self  # pylint: disable=redefined-variable-type

        callbacks.set_model(callback_model)
        callbacks.set_params({
            'batch_size': batch_size,
            'epochs': epochs,
            'samples': num_train_samples,
            'verbose': verbose,
            'do_validation': do_validation,
            'metrics': callback_metrics or [],
        })
        callbacks.on_train_begin()
        callback_model.stop_training = False
        for cbk in callbacks:
            cbk.validation_data = val_ins

        return callbacks, callback_model
Пример #11
0
def train(model, train_x, train_y, epochs, batch_size, modeldir, logdir):

    class_weight = dict(
        zip([0, 1], compute_class_weight('balanced', [0, 1], train_y)))
    print("Unbalanced data, actual class_weight: ", class_weight)
    # class_weight = {0: 1, 1: 1000}
    print("Unbalanced data, using class_weight: ", class_weight)

    modelpath = modeldir + '/' + 'model_epoch-{epoch:02d}_loss-{loss:.4f}_valloss-{val_loss:.4f}_val_kauc-{val_kauc:.4f}.h5'
    # CHK = ModelCheckpoint(modelpath, monitor="val_kauc", verbose=1, save_best_only=True, save_weights_only=False, mode="max", period=1)
    ES = EarlyStopping(monitor="val_kauc",
                       min_delta=ES_MIN_DELTA,
                       patience=ES_PATIENCE,
                       verbose=2,
                       mode="max")
    TB = TensorBoard(log_dir=logdir,
                     histogram_freq=0,
                     write_graph=True,
                     write_images=False)
    RLRP = ReduceLROnPlateau(monitor="val_loss",
                             factor=RLRP_FACTOR,
                             patience=RLRP_PATIENCE,
                             min_lr=RLRP_MIN_LR)
    BL = BaseLogger()

    roc_callback = ROC_Callback()

    history = model.fit(train_x,
                        train_y,
                        validation_split=0.2,
                        epochs=epochs,
                        batch_size=batch_size,
                        class_weight=class_weight,
                        callbacks=[ES, TB, BL, RLRP, roc_callback])

    return history
    model.add(Dense(50))
    model.add(Activation('relu'))
    print(model.output_shape)
    model.add(Dense(1))
    model.add(Activation('tanh'))
    print(model.output_shape)

if save_model_and_data:

    print("--------------- Save model architecture  -----------------")
    json_string = model.to_json()
    f = open('model.json', 'w')
    f.write(json_string)
    f.close()

    print("--------------- TRAINING THE MODEL  -----------------")

    #    model.compile(loss='mse', optimizer='rmsprop')
    model.compile(loss='mse', optimizer='adam')
    #    model.compile(loss='mse', optimizer='rmsprop')
    model.fit(X_train,
              y_train,
              batch_size=batch,
              nb_epoch=epoch,
              verbose=1,
              callbacks=[BaseLogger()],
              validation_split=validation)

    print("--------------- Save weights  -----------------")
    model.save_weights('model.h5')
print("--------------- ALL DONE  -----------------")
Пример #13
0
models['adam'] = create_model()

models['adam'].summary()

plot_model(models['adam'], to_file = model_name + '-model.png', show_shapes=False)
Image(filename = model_name + '-model.png')

"""## Train Model"""

s1_data.shape

results = []
for name, model in models.items():
    callbacks = [
        BaseLogger(),
        ReduceLROnPlateau(monitor = 'val_loss', factor=0.2, patience=5, min_lr=0.001),
        TensorBoard(log_dir='./' + model_name + '-' + name + '-logs', histogram_freq=0, write_graph=True, write_images=True),
        ModelCheckpoint(model_name + '-' + name + '-checkpoint-weights.{epoch:02d}-{val_acc:.2f}.hdf5', monitor='val_acc', save_best_only=True)
    ]
    
    start_time = time.time()
    print('')
    print('Start learning %s at %d' % (name, start_time))
    print('Epochs: %d' % epochs)
    print('Batch size: %d' % batch_size)

    history = model.fit([s1_data, s2_data],
                        labels,
                        epochs = 30,
                        batch_size = batch_size,
Пример #14
0
    def _train_by_batch(self):
        # batch finite generator should be loaded within epoch loop
        logger.info('Start training by batch')
        self.validation_xy = self.load_data('val', feed_mode='all')
        do_validation = bool(self.validation_xy)

        # prepare display labels in tensorboard
        out_labels = self.model._get_deduped_metrics_names()
        callback_metrics = out_labels + ['val_' + n for n in out_labels]

        # prepare callbacks
        self.model.history = History()
        callbacks = [BaseLogger()] + (self.callbacks
                                      or []) + [self.model.history]
        # callbacks = (self.callbacks or []) + [self.model.history]
        if self.verbose:
            callbacks += [ProgbarLogger(count_mode='samples')]
        callbacks = CallbackList(callbacks)

        # it's possible to callback a different model than this model
        if hasattr(self.model, 'callback_model') and self.model.callback_model:
            callback_model = self.model.callback_model
        else:
            callback_model = self.model
        callbacks.set_model(callback_model)
        callbacks.set_params({
            'epochs': self.epochs,
            'samples': self.data.nb_train,
            'verbose': self.verbose,
            'do_validation': do_validation,
            'metrics': callback_metrics,
        })
        callbacks.on_train_begin()

        for epoch in range(self.epochs):
            start_e = time()
            callbacks.on_epoch_begin(epoch)
            xy_gen = self.load_data('train', feed_mode='batch')
            logger.info('New training epoch')
            for batch_index, (x, y) in enumerate(xy_gen):
                # build batch logs
                batch_logs = {}
                if isinstance(x, list):
                    batch_size = x[0].shape[0]
                elif isinstance(x, dict):
                    batch_size = list(x.values())[0].shape[0]
                else:
                    batch_size = x.shape[0]
                batch_logs['batch'] = batch_index
                batch_logs['size'] = batch_size
                callbacks.on_batch_begin(batch_index, batch_logs)
                outs = self.model.train_on_batch(x, y)

                if not isinstance(outs, list):
                    outs = [outs]
                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o
                callbacks.on_batch_end(batch_index, batch_logs)

                if (batch_index + 1) % 1000 == 0 and do_validation:
                    val_outs = self.model.evaluate(*self.validation_xy,
                                                   batch_size=81920,
                                                   verbose=0)
                    batch_logs = {}
                    if not isinstance(val_outs, list):
                        val_outs = [val_outs]
                    for l, o in zip(out_labels, val_outs):
                        batch_logs['val_' + l] = o
                    print(' - Eval inside: %.6f' % val_outs[0])
                    for cb in self.callbacks:
                        if cb.__class__ == tensorBoard:
                            cb.on_batch_end(batch_index,
                                            batch_logs,
                                            count=False)

            epoch_logs = {}
            if do_validation:
                val_outs = self.model.evaluate(*self.validation_xy,
                                               batch_size=81920,
                                               verbose=0)
                if not isinstance(val_outs, list):
                    val_outs = [val_outs]
                # Same labels assumed.
                for l, o in zip(out_labels, val_outs):
                    epoch_logs['val_' + l] = o

            callbacks.on_batch_end(epoch, epoch_logs)
            callbacks.on_epoch_end(epoch, epoch_logs)

            elapsed_e = timedelta(seconds=int(time() - start_e))
            self.send_metric('elapsed_per_epoch', elapsed_e)

            if not self.no_save and do_validation and (epoch !=
                                                       self.epochs - 1):
                self.model.save(
                    'results/trained_models/%s_ctr_model_%.4f_epoch_%d.h5' %
                    (self.sess_id, val_outs[0], epoch))

        callbacks.on_train_end()
        return self.model.history
Пример #15
0
def predict_image(version, image_path, batch_size, overlap, data_format=None):
    def current_time_millis():
        return int(round(time.time() * 1000))

    def offset(size, diff, overlap):
        return math.floor(diff / math.ceil(diff / (size * (1 - overlap))))

    def map_c(i, j, b, l):
        return int(((i * b) + j) / l)

    def map_r(i, j, b, l):
        return ((i * b) + j) % l

    if data_format is None:
        data_format = K.image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format:', data_format)

    path = version.model_file.name
    print(_('Loading model "%(path)s".') % {'path': path})
    model = load_model(os.path.join(settings.MEDIA_ROOT, path))

    if len(model.inputs) != 1:
        raise RuntimeError('Models with more than one input are not'
                           ' supported at the moment.')

    inputs = []
    for i in range(len(model.inputs)):
        name = model.inputs[i].name
        pos = min(
            name.index('/') if '/' in name else len(name),
            name.index(':') if ':' in name else len(name))
        name = name[:pos]

        inputs.append({'shape': model.inputs[i].shape.as_list(), 'name': name})
        if data_format == 'channels_first':
            inputs[i]['grayscale'] = inputs[i]['shape'][1] == 1
            inputs[i]['r'] = inputs[i]['shape'][2]
            inputs[i]['c'] = inputs[i]['shape'][3]
        elif data_format == 'channels_last':
            inputs[i]['r'] = inputs[i]['shape'][1]
            inputs[i]['c'] = inputs[i]['shape'][2]
            inputs[i]['grayscale'] = inputs[i]['shape'][3] == 1

        inputs[i]['img'] = img_to_array(
            load_img(image_path, inputs[i]['grayscale']))
        inputs[i]['img'] *= 1. / 255
        if data_format == 'channels_first':
            inputs[i]['img_r'] = inputs[i]['img'].shape[1]
            inputs[i]['img_c'] = inputs[i]['img'].shape[2]
        elif data_format == 'channels_last':
            inputs[i]['img_r'] = inputs[i]['img'].shape[0]
            inputs[i]['img_c'] = inputs[i]['img'].shape[1]

        inputs[i]['diff_r'] = inputs[i]['img_r'] - inputs[i]['r']
        inputs[i]['diff_c'] = inputs[i]['img_c'] - inputs[i]['c']
        inputs[i]['offset_r'] = offset(inputs[i]['r'], inputs[i]['diff_r'],
                                       overlap)
        inputs[i]['offset_c'] = offset(inputs[i]['c'], inputs[i]['diff_c'],
                                       overlap)
        inputs[i]['nb_r'] = math.ceil(
            inputs[i]['diff_r'] / inputs[i]['offset_r']) + 1
        inputs[i]['nb_c'] = math.ceil(
            inputs[i]['diff_c'] / inputs[i]['offset_c']) + 1
    inputs = inputs[0]
    N = inputs['nb_r'] * inputs['nb_c']
    steps = math.ceil(N / batch_size)

    metrics = []
    outputs = []
    for i in range(len(model.outputs)):
        tshape = model.outputs[i].shape.as_list()
        name = model.outputs[i].name
        pos = min(
            name.index('/') if '/' in name else len(name),
            name.index(':') if ':' in name else len(name))
        name = name[:pos]
        activation = model.get_layer(name).activation.__name__.lower()
        outputs.append({'name': name, 'shape': tshape})

        if len(tshape) == 2:
            if activation == 'softmax':
                outputs[i]['t'] = 'class'
            else:
                outputs[i]['t'] = 'multi'

            nb_classes = tshape[1]
            if nb_classes is None:
                nb_classes = model.get_layer(name).output_shape[1]
            nb_classes = int(nb_classes)
            metrics += ['%s:%s' % (name, i) for i in range(nb_classes)]

            if data_format == 'channels_first':
                shape = (nb_classes, inputs['nb_r'], inputs['nb_c'])
            elif data_format == 'channels_last':
                shape = (inputs['nb_r'], inputs['nb_c'], nb_classes)

        elif len(tshape) == 4:
            if activation == 'softmax':
                outputs[i]['t'] = 'class'
            else:
                outputs[i]['t'] = 'img'

            shape = (inputs['nb_r'], inputs['nb_c']) + tuple(tshape[1:])
        outputs[i]['p'] = np.zeros(shape)

    history = History()
    callbacks = CallbackList([BaseLogger(), history, ProgbarLogger()])
    callbacks.set_model(model)
    callbacks.set_params({
        'batch_size': batch_size,
        'epochs': 1,
        'steps': steps,
        'samples': N,
        'verbose': 1,
        'do_validation': False,
        'metrics': metrics,
    })

    callbacks.on_train_begin()
    callbacks.on_epoch_begin(0)
    start_time = current_time_millis()
    for b in range(steps):
        current_index = (b * batch_size) % N
        if N >= current_index + batch_size:
            current_batch_size = batch_size
        else:
            current_batch_size = N - current_index

        batch_logs = {'batch': b, 'size': current_batch_size}
        for metric in metrics:
            batch_logs[metric] = 0
        callbacks.on_batch_begin(b, batch_logs)

        bX = np.zeros((current_batch_size, ) + tuple(inputs['shape'][1:]))
        for j in range(current_batch_size):
            idx_r = map_r(b, j, batch_size, inputs['nb_r'])
            idx_c = map_c(b, j, batch_size, inputs['nb_r'])
            top = min(idx_r * inputs['offset_r'],
                      inputs['img_r'] - inputs['r'])
            bottom = min(idx_r * inputs['offset_r'] + inputs['r'],
                         inputs['img_r'])
            left = min(idx_c * inputs['offset_c'],
                       inputs['img_c'] - inputs['c'])
            right = min(idx_c * inputs['offset_c'] + inputs['c'],
                        inputs['img_c'])

            if data_format == 'channels_first':
                bX[j] = inputs['img'][:, top:bottom, left:right]
            elif data_format == 'channels_last':
                bX[j] = inputs['img'][top:bottom, left:right, :]

        p = model.predict_on_batch(bX)
        if type(p) != list:
            p = [p]
        for j in range(current_batch_size):
            for i in range(len(outputs)):
                idx_r = map_r(b, j, batch_size, inputs['nb_r'])
                idx_c = map_c(b, j, batch_size, inputs['nb_r'])

                if len(outputs[i]['p'].shape) == 3:
                    if data_format == 'channels_first':
                        outputs[i]['p'][:, idx_r, idx_c] = p[i][j]
                    elif data_format == 'channels_last':
                        outputs[i]['p'][idx_r, idx_c, :] = p[i][j]
                    metric = metrics[p[i][j].argmax()]
                    batch_logs[metric] += 1. / current_batch_size
                elif len(outputs[i]['p'].shape) == 5:
                    outputs[i]['p'][idx_r, idx_c, :, :, :] = p[i][j]
        callbacks.on_batch_end(b, batch_logs)
    runtime = (current_time_millis() - start_time) / 1000
    callbacks.on_epoch_end(0, {'runtime': runtime})
    callbacks.on_train_end()

    for i in range(len(outputs)):
        if len(outputs[i]['shape']) == 2:
            if data_format == 'channels_first':
                shape = (outputs[i]['p'].shape[0], inputs['img_r'],
                         inputs['img_c'])
            elif data_format == 'channels_last':
                shape = (inputs['img_r'], inputs['img_c'],
                         outputs[i]['p'].shape[2])
        elif len(tshape) == 4:
            if data_format == 'channels_first':
                shape = (outputs[i]['p'].shape[2], inputs['img_r'],
                         inputs['img_c'])
            elif data_format == 'channels_last':
                shape = (inputs['img_r'], inputs['img_c'],
                         outputs[i]['p'].shape[4])

        count = np.zeros(shape)
        outputs[i]['img'] = np.zeros(shape)
        if len(outputs[i]['p'].shape) == 3:
            if data_format == 'channels_first':
                nb_rows = outputs[i]['p'].shape[1]
                nb_cols = outputs[i]['p'].shape[2]
            elif data_format == 'channels_last':
                nb_rows = outputs[i]['p'].shape[0]
                nb_cols = outputs[i]['p'].shape[1]
        elif len(outputs[i]['p'].shape) == 5:
            nb_rows = outputs[i]['p'].shape[0]
            nb_cols = outputs[i]['p'].shape[1]

        for j in range(nb_rows):
            for k in range(nb_cols):
                top = min(j * inputs['offset_r'],
                          inputs['img_r'] - inputs['r'])
                bottom = min(j * inputs['offset_r'] + inputs['r'],
                             inputs['img_r'])
                left = min(k * inputs['offset_c'],
                           inputs['img_c'] - inputs['c'])
                right = min(k * inputs['offset_c'] + inputs['c'],
                            inputs['img_c'])

                if data_format == 'channels_first':
                    outputs[i]['img'][:, top:bottom, left:right] += \
                        outputs[i]['p'][:, j, k]
                    count[:, top:bottom, left:right] += 1
                elif data_format == 'channels_last':
                    outputs[i]['img'][top:bottom, left:right, :] += \
                        outputs[i]['p'][j, k, :]
                    count[top:bottom, left:right, :] += 1
        outputs[i]['img'] /= count
        del outputs[i]['p']
        del outputs[i]['shape']
    return history.history, outputs
Пример #16
0
kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)


# Define a model generator
def generate_model():
    _model = Sequential()
    _model.add(Dense(22, input_dim=28))
    _model.add(SReLU())
    _model.add(Dropout(0.2))
    _model.add(Dense(1, activation='sigmoid'))
    _model.compile(loss='binary_crossentropy', optimizer='adam')
    return _model


# Define callbacks
baselogger = BaseLogger()
earlystop = EarlyStopping(monitor='val_loss',
                          min_delta=1e-4,
                          patience=5,
                          verbose=0,
                          mode='auto')
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                              factor=0.2,
                              patience=5,
                              min_lr=0.001)
tensor_board = TensorBoard(log_dir='./logs',
                           histogram_freq=0,
                           write_graph=True,
                           write_images=False)

# Storage
Пример #17
0
def main(args):

    try:
        opts, args = getopt.getopt(args, "c:s", ["config="])
    except getopt.GetoptError:
        print('usage: -c config.json')
        sys.exit(2)

    start_from_model = False
    for opt, arg in opts:
        if opt in ("-c", "--config"):
            config_fname = os.path.join('configurations', arg)
        elif opt == '-s':
            start_from_model = True

    if start_from_model:
        filemode = 'a'
    else:
        filemode = 'w'

    log_path = 'logging/vae_nlg_{}'.format(int(round(time.time() * 1000)))
    os.mkdir(log_path)

    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO,
                        filename='{}/evolution.log'.format(log_path),
                        filemode=filemode)

    with open(config_fname, 'r') as json_data:
        config_data = json.load(json_data)

        batch_size = config_data['batch_size']
        epochs = config_data['nb_epochs']
        discriminator_iterations = config_data['discriminator_iterations']
        tweets_path = config_data['tweets_path']
        vocab_path = config_data['vocab_path']
        vocab = cPickle.load(open(join(vocab_path, 'vocabulary.pkl'), 'rb'))

        #== == == == == == =
        # Load all the Data
        #== == == == == == =

        noutputs = 5

        logging.info('Load Training Data')
        train_input, train_output = load_text_pairs(
            join(tweets_path, 'training_set.tsv'), config_data, vocab,
            noutputs)
        logging.info('Load Validation Data')
        valid_input, valid_output = load_text_pairs(
            join(tweets_path, 'vaild_set.tsv'), config_data, vocab, noutputs)
        logging.info('Load Output Validation Data')
        valid_dev_input, valid_dev_output = load_text_pairs(
            join(tweets_path, 'test_set.tsv'), config_data, vocab, noutputs)

        #train_input = [x[:1213] for x in train_input]
        #train_output = [x[:1213] for x in train_output]

        noise_valid_input = np.zeros(shape=(valid_input[0].shape[0],
                                            config_data['z_size']))

        step = K.variable(1.)
        steps_per_epoch = ceil(train_output[0].shape[0] /
                               config_data['batch_size'])
        # == == == == == == == == == == =
        # Define and load the CNN model
        # == == == == == == == == == == =
        vae_model, vae_model_test, decoder_discr_model, decoder_test_model, discriminator_model, discriminator = get_vae_gan_model(
            config_data, vocab, step)
        with open(os.path.join(log_path, 'models.txt'), 'wt') as fh:
            fh.write('VAE Model\n')
            fh.write('---------\n')
            vae_model.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('VAE Model Test\n')
            fh.write('--------------\n')
            vae_model_test.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('Decoder Discriminator Model\n')
            fh.write('---------------------------\n')
            decoder_discr_model.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('Decoder Test Model\n')
            fh.write('---------------------------\n')
            decoder_test_model.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('Discriminator Model\n')
            fh.write('-------------------\n')
            discriminator_model.summary(print_fn=lambda x: fh.write(x + '\n'))

        terminate_on_nan = TerminateOnNaN()
        model_checkpoint = ModelCheckpoint(
            'models/vae_model/weights.{epoch:02d}.hdf5',
            period=10,
            save_weights_only=True)

        enc_out_labels = [
            'enc_' + s for s in vae_model._get_deduped_metrics_names()
        ]
        dec_out_labels = [
            'dec_' + s
            for s in decoder_discr_model._get_deduped_metrics_names()
        ]
        dis_out_labels = [
            'dis_' + s
            for s in discriminator_model._get_deduped_metrics_names()
        ]
        out_labels = enc_out_labels + dec_out_labels + [
            'dis_real', 'dis_gen', 'dis_noise'
        ]

        #out_labels = full_model._get_deduped_metrics_names()

        callback_metrics = out_labels + ['val_' + n for n in out_labels]

        step_callback = StepCallback(step, steps_per_epoch)
        output_callback = GANOutputCallback(
            vae_model_test,
            valid_dev_input[0],
            1,
            vocab,
            '',
            fname='{}/test_output'.format(log_path))
        callbacks = CallbackList([
            BaseLogger(),
            ProgbarLogger(count_mode='steps'), step_callback, output_callback,
            model_checkpoint, terminate_on_nan
        ])

        callbacks.set_model(vae_model_test)
        callbacks.set_params({
            'batch_size': batch_size,
            'epochs': epochs,
            'steps': steps_per_epoch,
            'verbose': True,
            'do_validation': True,
            'metrics': callback_metrics or [],
        })

        callbacks.on_train_begin()
        initial_epoch = 0
        num_train_samples = train_input[0].shape[0]
        index_array = np.arange(num_train_samples)

        steps = 0
        epoch = initial_epoch
        while epoch < epochs:
            epoch_logs = {}
            callbacks.on_epoch_begin(epoch)
            index_array = _batch_shuffle(index_array, batch_size)

            steps_done = 0
            batches = _make_batches(num_train_samples, batch_size)
            for batch_index, (batch_start, batch_end) in enumerate(batches):
                batch_logs = {}
                batch_ids = index_array[batch_start:batch_end]
                X = _slice_arrays(train_input, batch_ids)
                y = _slice_arrays(train_output, batch_ids)

                batch_logs['batch'] = batch_index
                batch_logs['size'] = batch_size

                callbacks.on_batch_begin(batch_index, batch_logs)

                set_trainability(discriminator, trainable=False)
                enc_outs = vae_model.train_on_batch(x=X, y=y[:3])

                set_trainability(discriminator, trainable=True)
                list_disc_loss_real = []
                list_disc_loss_gen = []
                list_disc_loss_noise = []
                if steps < 25 or steps % 500 == 0:
                    disc_iterations = 100
                else:
                    disc_iterations = discriminator_iterations
                noise_input = np.zeros(shape=(len(batch_ids),
                                              config_data['z_size']))
                for disc_it in range(disc_iterations):
                    #clip_weights(discriminator)
                    real_idx = np.random.choice(train_input[0].shape[0],
                                                len(batch_ids),
                                                replace=False)
                    train_real_batch = [x[real_idx] for x in train_input]

                    #train on real data
                    x_fake = vae_model_test.predict_on_batch(
                        x=train_real_batch[0])
                    x_noise_fake = decoder_test_model.predict_on_batch(
                        x=noise_input)

                    train_input_discr = np.concatenate(
                        (train_real_batch[0], train_real_batch[0],
                         train_real_batch[0]))
                    train_output_discr = np.concatenate(
                        (train_real_batch[1], x_fake, x_noise_fake))
                    labels = np.asarray(
                        len(batch_ids) * [1] + 2 * len(batch_ids) * [-1])

                    index_array_discr = np.arange(len(labels))
                    np.random.shuffle(index_array_discr)

                    discr_batch = [
                        train_input_discr[index_array_discr],
                        train_output_discr[index_array_discr]
                    ]
                    discr_batch_labels = labels[index_array_discr]

                    dis_outs_real = discriminator_model.train_on_batch(
                        discr_batch, discr_batch_labels)
                    #dis_outs_real = discriminator_model.train_on_batch(train_real_batch, -np.ones(shape=(len(batch_ids), 1)))
                    #dis_outs_gen = discriminator_model.train_on_batch([train_real_batch[0], x_fake], np.ones(shape=(len(batch_ids), 1)))
                    #dis_outs_gen_noise = discriminator_model.train_on_batch([train_real_batch[0], x_noise_fake], np.ones(shape=(len(batch_ids), 1)))

                    list_disc_loss_real.append(dis_outs_real)
                    #list_disc_loss_gen.append(dis_outs_gen)
                    #list_disc_loss_noise.append(dis_outs_gen_noise)

                loss_d_real = -np.mean(list_disc_loss_real)
                loss_d_gen = np.mean(list_disc_loss_gen)
                loss_d_noise = np.mean(list_disc_loss_noise)

                set_trainability(discriminator, trainable=False)

                decoder_discr_input = [X[0], noise_input]
                dec_outs = decoder_discr_model.train_on_batch(
                    x=decoder_discr_input,
                    y=-np.ones(shape=(len(batch_ids), 1)))

                outs = enc_outs + [dec_outs] + [loss_d_real]

                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o

                callbacks.on_batch_end(batch_index, batch_logs)
                epoch_logs = {}
                batch_index += 1
                steps_done += 1
                steps += 1
                # Epoch finished.
                if steps_done >= steps_per_epoch:
                    valid_len = valid_output[0].shape[0]
                    enc_val_outs = vae_model.evaluate(valid_input,
                                                      valid_output[:3],
                                                      verbose=False)
                    dec_val_outs = decoder_discr_model.evaluate(
                        [valid_input[0], noise_valid_input],
                        -np.ones(shape=(valid_len, 1)),
                        verbose=False)
                    dis_val_outs = discriminator_model.evaluate(
                        valid_input,
                        -np.ones(shape=(valid_len, 1)),
                        verbose=False)

                    val_outs = enc_val_outs + [dec_val_outs] + [dis_val_outs]

                    #val_outs = full_model.evaluate(valid_input, valid_output, verbose=False)

                    if not isinstance(val_outs, list):
                        val_outs = [val_outs]
                    # Same labels assumed.
                    for l, o in zip(out_labels, val_outs):
                        epoch_logs['val_' + l] = o

            callbacks.on_epoch_end(epoch, epoch_logs)
            epoch += 1

        callbacks.on_train_end()
    def fit(self,
            X_train,
            Y_train,
            X_test,
            modeldir=".",
            logdir=".",
            epochs=2,
            batch_size=20000):

        max_app = self._config["max_app"]
        max_ch = self._config["max_ch"]
        max_dev = self._config["max_dev"]
        max_os = self._config["max_os"]
        max_h = self._config["max_h"]
        max_dqh = self._config["max_dqh"]
        max_qh = self._config["max_qh"]
        max_d = self._config["max_d"]
        max_wd = self._config["max_wd"]
        max_qty = self._config["max_qty"]
        max_c1 = self._config["max_c1"]
        max_c2 = self._config["max_c2"]
        max_c3 = self._config["max_c3"]
        max_c4 = self._config["max_c4"]
        max_c5 = self._config["max_c5"]

        X_train = self.convert(X_train)

        # Establish the network
        emb_n = 100
        dense_n = 1000
        in_app = Input(shape=[1], name='app')
        emb_app = Embedding(max_app, emb_n)(in_app)
        in_ch = Input(shape=[1], name='ch')
        emb_ch = Embedding(max_ch, emb_n)(in_ch)
        in_dev = Input(shape=[1], name='dev')
        emb_dev = Embedding(max_dev, emb_n)(in_dev)
        in_os = Input(shape=[1], name='os')
        emb_os = Embedding(max_os, emb_n)(in_os)
        in_h = Input(shape=[1], name='h')
        emb_h = Embedding(max_h, emb_n)(in_h)
        in_dqh = Input(shape=[1], name='dqh')
        emb_dqh = Embedding(max_dqh, emb_n)(in_dqh)
        in_qh = Input(shape=[1], name='qh')
        emb_qh = Embedding(max_qh, emb_n)(in_qh)
        in_d = Input(shape=[1], name='d')
        emb_d = Embedding(max_d, emb_n)(in_d)
        in_wd = Input(shape=[1], name='wd')
        emb_wd = Embedding(max_wd, emb_n)(in_wd)
        in_qty = Input(shape=[1], name='qty')
        emb_qty = Embedding(max_qty, emb_n)(in_qty)
        in_c1 = Input(shape=[1], name='c1')
        emb_c1 = Embedding(max_c1, emb_n)(in_c1)
        in_c2 = Input(shape=[1], name='c2')
        emb_c2 = Embedding(max_c2, emb_n)(in_c2)
        in_c3 = Input(shape=[1], name='c3')
        emb_c3 = Embedding(max_c3, emb_n)(in_c3)
        in_c4 = Input(shape=[1], name='c4')
        emb_c4 = Embedding(max_c4, emb_n)(in_c4)
        in_c5 = Input(shape=[1], name='c5')
        emb_c5 = Embedding(max_c5, emb_n)(in_c5)

        fe = concatenate([(emb_app), (emb_ch), (emb_dev), (emb_os), (emb_h),
                          (emb_qh), (emb_dqh), (emb_d), (emb_wd), (emb_qty),
                          (emb_c1), (emb_c2), (emb_c3), (emb_c4), (emb_c5)])

        s_dout = SpatialDropout1D(0.2)(fe)
        fl = Flatten()(s_dout)
        x = Dropout(0.2)(Dense(dense_n, activation='relu')(fl))
        x = Dropout(0.2)(Dense(dense_n, activation='relu')(x))
        gl = MaxPooling1D(pool_size=1, strides=1)(s_dout)
        fl = Flatten()(gl)
        x = concatenate([(x), (fl)])
        outp = Dense(1, activation='sigmoid')(x)
        model = Model(inputs=[
            in_app, in_ch, in_dev, in_os, in_h, in_dqh, in_qh, in_d, in_wd,
            in_qty, in_c1, in_c2, in_c3, in_c4, in_c5
        ],
                      outputs=outp)

        # Compile the model
        exp_decay = lambda init, fin, steps: (init / fin)**(1 /
                                                            (steps - 1)) - 1
        steps = int(len(X_train) / batch_size) * epochs
        # lr_init, lr_fin = 0.001, 0.0001
        # lr_init, lr_fin = 0.00005, 0.000005
        # lr_decay = exp_decay(lr_init, lr_fin, steps)
        # lr_decay = 0.0000001
        # lr = lr_init
        # optimizer_adam = optimizers.Adam(lr=lr, decay=lr_decay)
        # lr = DenseModelOne.OPT_LEARNING_RATE
        # lr_decay = DenseModelOne.OPT_DECAY
        # optimizer_adam = optimizers.adam(lr=lr, decay=lr_decay)
        # print("Using learning init rate: ", lr, ", decay: ", lr_decay)
        lr = DenseModelOne.OPT_LEARNING_RATE
        optimizer_adam = optimizers.Adam(lr=lr)
        print("Using learning init rate: ", lr)
        model.compile(loss="binary_crossentropy",
                      optimizer=optimizer_adam,
                      metrics=["accuracy"])

        model.summary()

        self._model = model

        # Establish class weights since this is a very unbalanced dataset
        class_weight = dict(
            zip([0, 1], compute_class_weight('balanced', [0, 1], Y_train)))
        print("Unbalanced data, actual class_weight: ", class_weight)
        class_weight = {0: .01, 1: .99}
        print("Unbalanced data, using  class_weight: ", class_weight)

        # Establish callbacks for training
        modelpath = modeldir + '/' + 'dense-model-checkpoint.h5'
        CHK = ModelCheckpoint(modelpath,
                              monitor="val_loss",
                              verbose=1,
                              save_best_only=True,
                              save_weights_only=False,
                              mode="auto",
                              period=1)
        ES = EarlyStopping(monitor="val_loss",
                           min_delta=DenseModelOne.ES_MIN_DELTA,
                           patience=DenseModelOne.ES_PATIENCE,
                           verbose=2,
                           mode="auto")
        TB = TensorBoard(log_dir=logdir,
                         histogram_freq=0,
                         write_graph=True,
                         write_images=False)
        RLRP = ReduceLROnPlateau(monitor="val_loss",
                                 factor=DenseModelOne.RLRP_FACTOR,
                                 patience=DenseModelOne.RLRP_PATIENCE,
                                 min_lr=DenseModelOne.RLRP_MIN_LR,
                                 verbose=1)
        BL = BaseLogger()
        # ROC = ROCCallback.ROCCallback()

        callbacks = [ES, TB, BL, RLRP, CHK]
        if self._X_validation is not None:
            print("Using AUCCallback...")
            AUC = AUCCallback.AUCCallback(self,
                                          self._X_validation,
                                          self._Y_validation,
                                          convert=True)
            callbacks.append(AUC)

        validation_data = None
        if self._X_validation is not None:
            print("Using validation_data (overrides validation_split)...")
            X_validation = self.convert(self._X_validation)
            Y_validation = self._Y_validation
            validation_data = (X_validation, Y_validation)

        # Train the model
        # (NOTE: if validation_data exists then it will OVERRIDE the validation split)
        history = self._model.fit(X_train,
                                  Y_train,
                                  batch_size=batch_size,
                                  epochs=epochs,
                                  validation_split=0.2,
                                  validation_data=validation_data,
                                  class_weight=class_weight,
                                  callbacks=callbacks,
                                  shuffle=True,
                                  verbose=1)

        return history
    def fit(self,
            X_train,
            Y_train,
            X_test,
            modeldir=".",
            logdir=".",
            epochs=2,
            batch_size=20000):

        max_app = self._config["max_app"]
        max_ch = self._config["max_ch"]
        max_dev = self._config["max_dev"]
        max_os = self._config["max_os"]
        max_h = self._config["max_h"]
        max_dqh = self._config["max_dqh"]
        max_qh = self._config["max_qh"]
        max_d = self._config["max_d"]
        max_wd = self._config["max_wd"]
        max_qty = self._config["max_qty"]
        max_c1 = self._config["max_c1"]
        max_c2 = self._config["max_c2"]
        max_c3 = self._config["max_c3"]
        max_c4 = self._config["max_c4"]
        max_c5 = self._config["max_c5"]

        X_train = self.convert(X_train)

        # Establish the network
        emb_n = 50
        dense_n1 = 1000
        dense_n2 = 1400
        dense_n3 = 200
        dense_n4 = 40

        in_app = Input(shape=[1], name="app")
        in_ch = Input(shape=[1], name="ch")
        in_dev = Input(shape=[1], name="dev")
        in_os = Input(shape=[1], name="os")
        in_h = Input(shape=[1], name="h")
        in_dqh = Input(shape=[1], name="dqh")
        in_qh = Input(shape=[1], name="qh")
        in_d = Input(shape=[1], name="d")
        in_wd = Input(shape=[1], name="wd")
        in_qty = Input(shape=[1], name="qty")
        in_c1 = Input(shape=[1], name="c1")
        in_c2 = Input(shape=[1], name="c2")
        in_c3 = Input(shape=[1], name="c3")
        in_c4 = Input(shape=[1], name="c4")
        in_c5 = Input(shape=[1], name="c5")

        emb_app = Embedding(max_app, emb_n)(in_app)
        emb_ch = Embedding(max_ch, int(emb_n / 2))(in_ch)
        emb_dev = Embedding(max_dev, int(emb_n * 3))(in_dev)
        emb_os = Embedding(max_os, emb_n)(in_os)
        emb_h = Embedding(max_h, int(emb_n / 5))(in_h)
        emb_dqh = Embedding(max_dqh, int(emb_n / 2))(in_dqh)
        emb_qh = Embedding(max_qh, int(emb_n / 10))(in_qh)
        emb_d = Embedding(max_d, int(emb_n / 5))(in_d)
        emb_wd = Embedding(max_wd, int(emb_n / 5))(in_wd)
        emb_qty = Embedding(max_qty, emb_n)(in_qty)
        emb_c1 = Embedding(max_c1, emb_n)(in_c1)
        emb_c2 = Embedding(max_c2, emb_n)(in_c2)
        emb_c3 = Embedding(max_c3, emb_n)(in_c3)
        emb_c4 = Embedding(max_c4, emb_n)(in_c4)
        emb_c5 = Embedding(max_c5, emb_n)(in_c5)

        # in_ip_freq = Input(shape=[1], name="ip_freq")
        # in_app_freq = Input(shape=[1], name="app_freq")
        # in_device_freq = Input(shape=[1], name="device_freq")
        # in_os_freq = Input(shape=[1], name="os_freq")
        # in_channel_freq = Input(shape=[1], name="channel_freq")
        in_app_channel_freq = Input(shape=[1], name="app_channel_freq")
        in_app_os_freq = Input(shape=[1], name="app_os_freq")
        in_app_device_freq = Input(shape=[1], name="app_device_freq")

        main = concatenate([
            # in_ip_freq,
            # in_app_freq,
            # in_device_freq,
            # in_os_freq,
            # in_channel_freq,
            in_app_channel_freq,
            in_app_os_freq,
            in_app_device_freq,
            Flatten()(emb_app),
            Flatten()(emb_ch),
            Flatten()(emb_dev),
            Flatten()(emb_os),
            Flatten()(emb_h),
            Flatten()(emb_dqh),
            Flatten()(emb_qh),
            Flatten()(emb_d),
            Flatten()(emb_wd),
            Flatten()(emb_qty),
            Flatten()(emb_c1),
            Flatten()(emb_c2),
            Flatten()(emb_c3),
            Flatten()(emb_c4),
            Flatten()(emb_c5)
        ])

        # s_dout = SpatialDropout1D(0.2)(main)
        # fl = Flatten()(s_dout)
        x = Dropout(0.2)(Dense(dense_n1, activation='relu')(main))
        x = Dropout(0.2)(Dense(dense_n1, activation='relu')(x))
        # gl = MaxPooling1D(pool_size=1, strides=1)(main)
        # fl = Flatten()(gl)
        # x = concatenate([(x), (fl)])
        outp = Dense(1, activation='sigmoid')(x)

        model = Model(
            inputs=[
                # in_ip_freq, in_app_freq, in_device_freq, in_os_freq, in_channel_freq,
                in_app_channel_freq,
                in_app_os_freq,
                in_app_device_freq,
                in_app,
                in_ch,
                in_dev,
                in_os,
                in_h,
                in_dqh,
                in_qh,
                in_d,
                in_wd,
                in_qty,
                in_c1,
                in_c2,
                in_c3,
                in_c4,
                in_c5
            ],
            outputs=outp)

        # Compile the model
        lr = DenseModelFour.OPT_LEARNING_RATE
        optimizer_adam = optimizers.Adam(lr=lr)
        print("Using learning init rate: ", lr)
        model.compile(loss="binary_crossentropy",
                      optimizer=optimizer_adam,
                      metrics=["accuracy"])

        model.summary()

        self._model = model

        # Establish class weights since this is a very unbalanced dataset
        class_weight = dict(
            zip([0, 1], compute_class_weight("balanced", [0, 1], Y_train)))
        print("Unbalanced data, actual class_weight: ", class_weight)
        class_weight = {0: .01, 1: .99}
        print("Unbalanced data, using  class_weight: ", class_weight)

        # Establish callbacks for training
        modelpath = modeldir + "/" + "dense-model-checkpoint.h5"
        CHK = ModelCheckpoint(modelpath,
                              monitor="val_loss",
                              verbose=1,
                              save_best_only=True,
                              save_weights_only=False,
                              mode="auto",
                              period=1)
        ES = EarlyStopping(monitor="val_loss",
                           min_delta=DenseModelFour.ES_MIN_DELTA,
                           patience=DenseModelFour.ES_PATIENCE,
                           verbose=2,
                           mode="auto")
        TB = TensorBoard(log_dir=logdir,
                         histogram_freq=0,
                         write_graph=True,
                         write_images=False)
        RLRP = ReduceLROnPlateau(monitor="val_loss",
                                 factor=DenseModelFour.RLRP_FACTOR,
                                 patience=DenseModelFour.RLRP_PATIENCE,
                                 min_lr=DenseModelFour.RLRP_MIN_LR,
                                 verbose=1)
        BL = BaseLogger()
        # ROC = ROCCallback.ROCCallback()

        callbacks = [ES, TB, BL, RLRP, CHK]
        if self._X_validation is not None:
            print("Using AUCCallback...")
            AUC = AUCCallback.AUCCallback(self,
                                          self._X_validation,
                                          self._Y_validation,
                                          convert=True)
            callbacks.append(AUC)

        validation_data = None
        if self._X_validation is not None:
            print("Using validation_data (overrides validation_split)...")
            X_validation = self.convert(self._X_validation)
            Y_validation = self._Y_validation
            validation_data = (X_validation, Y_validation)

        # Train the model
        # (NOTE: if validation_data exists then it will OVERRIDE the validation split)
        history = self._model.fit(X_train,
                                  Y_train,
                                  batch_size=batch_size,
                                  epochs=epochs,
                                  validation_split=0.2,
                                  validation_data=validation_data,
                                  class_weight=class_weight,
                                  callbacks=callbacks,
                                  shuffle=True,
                                  verbose=1)

        return history
Пример #20
0
def main(args):

    try:
        opts, args = getopt.getopt(args, "c:s", ["config="])
    except getopt.GetoptError:
        print('usage: -c config.json')
        sys.exit(2)

    start_from_model = False
    for opt, arg in opts:
        if opt in ("-c", "--config"):
            config_fname = os.path.join('configurations', arg)
        elif opt == '-s':
            start_from_model = True

    if start_from_model:
        filemode = 'a'
    else:
        filemode = 'w'

    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO,
                        filename='logging/vae_gan/evolution.log',
                        filemode=filemode)

    with open(config_fname, 'r') as json_data:
        config_data = json.load(json_data)

        tweets_path = config_data['tweets_path']
        vocab_path = config_data['vocab_path']
        vocab = cPickle.load(open(join(vocab_path, 'vocabulary.pkl'), 'rb'))

        #== == == == == == =
        # Load all the Data
        #== == == == == == =

        noutputs = 5

        logging.info('Load Training Data')
        train_input, train_output = load_data(
            join(tweets_path, 'en_train.tsv'), config_data, vocab, noutputs)
        logging.info('Load Validation Data')
        valid_input, valid_output = load_data(
            join(tweets_path, 'en_valid15.tsv'), config_data, vocab, noutputs)
        logging.info('Load Validation Data')
        valid_input2, valid_output2 = load_data(
            join(tweets_path, 'en_test16.tsv'), config_data, vocab, noutputs)
        logging.info('Load Test Data')
        test_input, test_output = load_data(join(tweets_path, 'en_test17.tsv'),
                                            config_data, vocab, noutputs)

        step = K.variable(1.)

        # == == == == == == == == == == =
        # Define and load the CNN model
        # == == == == == == == == == == =
        full_model, encoding_train_model, decoder_train_model, discriminator_train_model, decoder_inference, encoder, decoder, discriminator, discriminator_pretrain_model = vae_gan_model(
            config_data, vocab, step)
        #full_model.summary()
        encoding_train_model.summary()
        decoder_train_model.summary()
        discriminator_train_model.summary()
        decoder_inference.summary()
        encoder.summary()
        decoder.summary()
        discriminator.summary()

        #pretrain_discriminator(discriminator_pretrain_model, train_input, vocab)

        model_path = 'models/vae_model/'
        steps_per_epoch = int(
            ceil(config_data['samples_per_epoch'] / config_data['batch_size']))
        epochs = int(
            ceil(config_data['nb_epochs'] *
                 (config_data['nsamples'] / config_data['samples_per_epoch'])))
        batch_size = config_data['batch_size']

        initial_epoch = 0
        skip_texts = 0

        terminate_on_nan = TerminateOnNaN()
        model_checkpoint = ModelCheckpoint(
            'models/vae_model/weights.{epoch:02d}.hdf5',
            period=10,
            save_weights_only=True)

        generator = generate_data_stream(config_data['training_path'],
                                         config_data,
                                         vocab,
                                         config_data['batch_size'],
                                         skip_data=skip_texts,
                                         noutputs=noutputs)
        enqueuer = GeneratorEnqueuer(generator,
                                     use_multiprocessing=False,
                                     wait_time=0.01)
        enqueuer.start(workers=1, max_queue_size=10)
        output_generator = enqueuer.get()

        enc_out_labels = [
            'enc_' + s
            for s in encoding_train_model._get_deduped_metrics_names()
        ]
        dec_out_labels = [
            'dec_' + s
            for s in decoder_train_model._get_deduped_metrics_names()
        ]
        dis_out_labels = [
            'dis_' + s
            for s in discriminator_train_model._get_deduped_metrics_names()
        ]
        out_labels = enc_out_labels + dec_out_labels + dis_out_labels

        #out_labels = full_model._get_deduped_metrics_names()

        callback_metrics = out_labels + ['val_' + n for n in out_labels]

        step_callback = NewCallback(step, steps_per_epoch)
        output_callback = OutputCallback(decoder_inference, valid_input, 15,
                                         vocab, '')
        callbacks = CallbackList([
            BaseLogger(),
            ProgbarLogger(count_mode='steps'), step_callback, output_callback
        ])

        callbacks.set_model(full_model)
        callbacks.set_params({
            'epochs': epochs,
            'steps': steps_per_epoch,
            'verbose': True,
            'do_validation': True,
            'metrics': callback_metrics,
        })

        callbacks.on_train_begin()

        epoch = initial_epoch
        while epoch < epochs:
            epoch_logs = {}
            callbacks.on_epoch_begin(epoch)
            steps_done = 0
            batch_index = 0
            while steps_done < steps_per_epoch:
                batch_logs = {}

                batch_logs['batch'] = batch_index
                batch_logs['size'] = batch_size

                X, y = next(output_generator)

                callbacks.on_batch_begin(batch_index, batch_logs)

                set_trainability(encoder, trainable=True)
                set_trainability(decoder, trainable=False)
                set_trainability(discriminator, trainable=False)
                enc_outs = encoding_train_model.train_on_batch(X, y[:3])

                set_trainability(encoder, trainable=False)
                set_trainability(decoder, trainable=True)
                set_trainability(discriminator, trainable=False)
                dec_outs = decoder_train_model.train_on_batch(X, y[:4])

                set_trainability(encoder, trainable=False)
                set_trainability(decoder, trainable=False)
                set_trainability(discriminator, trainable=True)

                dis_outs = discriminator_train_model.train_on_batch(X, y[0])
                outs = enc_outs + dec_outs + [dis_outs]

                #outs = full_model.train_on_batch(X, y)

                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o

                callbacks.on_batch_end(batch_index, batch_logs)
                epoch_logs = {}
                batch_index += 1
                steps_done += 1

                # Epoch finished.
                if steps_done >= steps_per_epoch:
                    enc_val_outs = encoding_train_model.evaluate(
                        valid_input, valid_output[:3], verbose=False)
                    dec_val_outs = decoder_train_model.evaluate(
                        valid_input, valid_output[:4], verbose=False)
                    dis_val_outs = discriminator_train_model.evaluate(
                        valid_input, valid_output[0], verbose=False)

                    val_outs = enc_val_outs + dec_val_outs + [dis_val_outs]

                    #val_outs = full_model.evaluate(valid_input, valid_output, verbose=False)

                    if not isinstance(val_outs, list):
                        val_outs = [val_outs]
                    # Same labels assumed.
                    for l, o in zip(out_labels, val_outs):
                        epoch_logs['val_' + l] = o

            callbacks.on_epoch_end(epoch, epoch_logs)
            epoch += 1

        callbacks.on_train_end()
Пример #21
0
def predict(model,
            batch_size,
            num_outputs,
            save_path,
            evaluate=False,
            liver_only=False,
            save_predictions=False,
            initial_epoch=0,
            **kwargs):
    model, callbacks, gen = prepare_model(model=model,
                                          num_outputs=num_outputs,
                                          liver_only=liver_only,
                                          evaluate=evaluate,
                                          **kwargs)

    # Set up prediction file.
    if save_predictions:
        save_path = os.path.join(save_path, "predictions.zarr")
        if os.path.exists(save_path):
            os.remove(save_path)

    # Initialize callbacks
    val_callback_list = [BaseLogger()]
    if not liver_only:
        val_callback_list.extend(
            [callbacks['dice_lesion'], callbacks['dice_lesion_inliver']])
    if len(model.outputs) == 2 or liver_only:
        val_callback_list.append(callbacks['dice_liver'])
    val_callbacks = CallbackList(val_callback_list)
    val_callbacks.set_params({
        'nb_epoch': 0,
        'nb_sample': 0,
        'verbose': False,
        'do_validation': True,
        'metrics': model.metrics_names
    })
    val_callbacks.on_train_begin()
    val_callbacks.on_epoch_begin(0)

    # Create theano function
    if evaluate:
        inputs = model.inputs + model.targets + model.sample_weights
        if model.uses_learning_phase and \
                not isinstance(K.learning_phase(), int):
            inputs += [K.learning_phase()]
        predict_function = K.function(inputs,
                                      model.outputs + [model.total_loss] +
                                      model.metrics_tensors,
                                      updates=model.state_updates)
    else:
        inputs = model.inputs
        if model.uses_learning_phase and \
                not isinstance(K.learning_phase(), int):
            inputs += [K.learning_phase()]
        predict_function = K.function(inputs,
                                      model.outputs,
                                      updates=model.state_updates)

    # Predict for all data.
    print(' > Predicting...')
    for key in gen:
        print(' - DATA: {}'.format(key))

        # Duplicate inputs and outputs (and add outputs) as necessary.
        flow = repeat_flow(gen[key].flow(), num_outputs=num_outputs)

        # Set up file.
        if save_predictions:
            zgroup = zarr.open_group(store=save_path, mode='a', path="/")
            zarr_kwargs = {
                'chunks': (1, 512, 512),
                'compressor': zarr.Blosc(cname='lz4', clevel=9, shuffle=1)
            }

        # Predict and write to file.
        batch_num = 0
        for vol_num, volume in enumerate(flow):
            print("Predicting on `{}` - {}/{}"
                  "".format(key, vol_num + 1, len(gen[key])))

            # Begin writing to file.
            if save_predictions:
                vol_idx = volume[-1]
                subgroup = zgroup.create_group(str(vol_idx))
                num_channels = np.sum(model.output_shape[i][1] \
                                                   for i in range(num_outputs))
                output_shape = \
                       (len(volume[0]), num_channels)+model.output_shape[0][2:]
                subgroup.empty("volume",
                               shape=output_shape,
                               dtype=np.float32,
                               **zarr_kwargs)
                segmentation = volume[1]
                if isinstance(segmentation, list):
                    segmentation = segmentation[0]
                subgroup.create_dataset("segmentation",
                                        shape=segmentation.shape,
                                        data=segmentation,
                                        dtype=np.int16,
                                        **zarr_kwargs)

            # Iterate through volume batch-wise.
            for idx0, idx1 in zip(
                    range(0, len(volume[0]), batch_size),
                    range(batch_size,
                          len(volume[0]) + batch_size + 1, batch_size)):
                # Prepare data for joint evaluation and prediction.
                if evaluate:
                    batch = (volume[0][idx0:idx1], volume[1][idx0:idx1])
                    x, y, sample_weights = model._standardize_user_data(
                        batch[0], batch[1])
                    ins = x + y + sample_weights
                else:
                    batch = (volume[0][idx0:idx1], )
                    ins = _standardize_input_data(batch[0],
                                                  model._feed_input_names,
                                                  model._feed_input_shapes,
                                                  check_batch_axis=False,
                                                  exception_prefix='input')
                if model.uses_learning_phase and \
                        not isinstance(K.learning_phase(), int):
                    ins += [0.]

                # Jointly evaluate and predict.
                outputs = predict_function(ins)
                if num_outputs == 1:
                    predictions = outputs[0:1]
                    if evaluate:
                        val_metrics = outputs[1:]
                elif num_outputs == 2:
                    predictions = outputs[0:2]
                    if evaluate:
                        val_metrics = outputs[2:]
                else:
                    raise ValueError("num_outputs must be 1 or 2")

                # Write predictions.
                predictions = np.concatenate(predictions, axis=1)
                subgroup['volume'][idx0:idx1] = predictions

                # Update metrics
                if evaluate:
                    val_logs = OrderedDict(
                        zip(model.metrics_names, val_metrics))
                    val_logs.update({
                        'batch': batch_num,
                        'size': len(batch[0])
                    })
                    val_callbacks.on_batch_end(batch_num, val_logs)

                batch_num += 1

    if evaluate:
        # Update metrics
        val_callbacks.on_epoch_end(0, val_logs)

        # Output metrics
        for m in val_logs:
            if m not in ['batch', 'size']:
                print("{}: {}".format(m, val_logs[m]))
Пример #22
0
    def fit_dataset(self,
                    dataset,
                    steps_per_epoch=None,
                    batch_size=32,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    on_sample=None,
                    on_scores=None):
        """Train the model on the given dataset for a given number of epochs.

        Arguments
        ---------
            dataset: Instance of `BaseDataset` that provides the data
                     to train on.
            steps_per_epoch: int or None, number of gradient updates before
                             considering an epoch has passed. If None it is set
                             to be `len(dataset.train_data) / batch_size`.
            batch_size: int, number of samples per gradient update
            epochs: int, number of times to iterate `steps_per_epoch` times
            verbose: {0, >0}, whether to employ the progress bar Keras
                     callback or not
            callbacks: list of Keras callbacks to be called during training
            on_sample: callable that accepts the sampler, idxs, w, scores
            on_scores: callable that accepts the sampler and scores
        """
        try:
            if len(dataset.train_data) < batch_size:
                raise ValueError(("The model cannot be trained with "
                                  "batch_size > training set"))
        except RuntimeError as e:
            assert "no size" in str(e)

        # Set steps_per_epoch properly
        if steps_per_epoch is None:
            steps_per_epoch = len(dataset.train_data) // batch_size

        # Create the callbacks list
        self.history = History()
        callbacks = [BaseLogger()] + (callbacks or []) + [self.history]
        if verbose > 0:
            callbacks += [ProgbarLogger(count_mode="steps")]
        callbacks = CallbackList(callbacks)
        #TODO: Should we be making it possible to call back a different model
        #      than self.model.model?
        callbacks.set_model(self.model.model)
        callbacks.set_params({
            "epochs":
            epochs,
            "steps":
            steps_per_epoch,
            "verbose":
            verbose,
            "do_validation":
            len(dataset.test_data) > 0,
            "metrics":
            self._get_metric_names() +
            ["val_" + n for n in self._get_metric_names()]
        })

        # Create the sampler
        sampler = self.sampler(dataset, batch_size, steps_per_epoch, epochs)

        # Start the training loop
        epoch = 0
        self.model.model.stop_training = False
        callbacks.on_train_begin()
        while epoch < epochs:
            callbacks.on_epoch_begin(epoch)
            for step in range(steps_per_epoch):
                batch_logs = {"batch": step, "size": batch_size}
                callbacks.on_batch_begin(step, batch_logs)

                # Importance sampling is done here
                idxs, (x, y), w = sampler.sample(batch_size)
                # Train on the sampled data
                loss, metrics, scores = self.model.train_batch(x, y, w)
                # Update the sampler
                sampler.update(idxs, scores)

                values = map(lambda x: x.mean(), [loss] + metrics)
                for l, o in zip(self._get_metric_names(), values):
                    batch_logs[l] = o
                callbacks.on_batch_end(step, batch_logs)

                if on_scores is not None:
                    on_scores(sampler, self._latest_scores)

                if on_sample is not None:
                    on_sample(sampler, self._latest_sample_event["idxs"],
                              self._latest_sample_event["w"],
                              self._latest_sample_event["predicted_scores"])

                if self.model.model.stop_training:
                    break

            # Evaluate now that an epoch passed
            epoch_logs = {}
            if len(dataset.test_data) > 0:
                val = self.model.evaluate(*dataset.test_data[:],
                                          batch_size=batch_size)
                epoch_logs = {
                    "val_" + l: o
                    for l, o in zip(self._get_metric_names(), val)
                }
            callbacks.on_epoch_end(epoch, epoch_logs)
            if self.model.model.stop_training:
                break
            epoch += 1
        callbacks.on_train_end()

        return self.history
Пример #23
0
from model import model
from properties import *
from keras.callbacks import BaseLogger, ModelCheckpoint

from data_generator import midi_input_generator, generate_song_array, save_array_to_midi

print "Training model"

#print generate_song_array(model)
#save_array_to_midi([generate_song_array(model)], 'Generated_zero.mid')
cp = ModelCheckpoint(model_check_point_file,
                     monitor='loss',
                     verbose=1,
                     save_best_only=True,
                     mode='max')
model.fit_generator(midi_input_generator(),
                    num_seq_in_epoch,
                    nb_epoch=num_epochs,
                    callbacks=[BaseLogger(), cp])

model.save_weights('net_dump.nw')

save_array_to_midi([generate_song_array(model)], 'Generated.mid')
Пример #24
0
def evaluate(model, save_path, num_outputs, liver_only=False, **kwargs):
    model, callbacks, gen = prepare_model(model=model,
                                          save_path=save_path,
                                          num_outputs=num_outputs,
                                          liver_only=liver_only,
                                          **kwargs)

    print(' > Evaluating the model...')
    from scipy.misc import imsave

    # Create directory, if needed
    save_predictions_to = os.path.join(save_path, "predictions")
    if not os.path.exists(save_predictions_to):
        os.makedirs(save_predictions_to)

    # Initialize callbacks
    val_callback_list = [BaseLogger()]
    if not liver_only:
        val_callback_list.extend(
            [callbacks['dice_lesion'], callbacks['dice_lesion_inliver']])
    if len(model.outputs) == 2 or liver_only:
        val_callback_list.append(callbacks['dice_liver'])
    val_callbacks = CallbackList(val_callback_list)
    val_callbacks.set_params({
        'nb_epoch': 0,
        'nb_sample': 0,
        'verbose': False,
        'do_validation': True,
        'metrics': model.metrics_names
    })
    val_callbacks.on_train_begin()
    val_callbacks.on_epoch_begin(0)

    # Create theano function
    inputs = model.inputs + model.targets + model.sample_weights
    if model.uses_learning_phase and \
            not isinstance(K.learning_phase(), int):
        inputs += [K.learning_phase()]
    predict_and_test_function = K.function( \
        inputs,
        model.outputs+[model.total_loss]+model.metrics_tensors,
        updates=model.state_updates)

    # Loop through batches, applying function and callbacks
    flow = repeat_flow(gen['valid_callback'].flow(), num_outputs=num_outputs)
    for batch_num, batch in enumerate(flow):
        x, y, sample_weights = model._standardize_user_data(batch[0], batch[1])
        ins = x + y + sample_weights
        if model.uses_learning_phase and \
                not isinstance(K.learning_phase(), int):
            ins += [0.]
        outputs = predict_and_test_function(ins)
        if num_outputs == 1:
            predictions = outputs[0:1]
            val_metrics = outputs[1:]
        else:
            predictions = outputs[0:2]
            val_metrics = outputs[2:]

        ## Save images
        #def process_slice(s):
        #s = np.squeeze(s).copy()
        #s[s<0]=0
        #s[s>1]=1
        #s[0,0]=1
        #s[0,1]=0
        #return s
        #for i in range(len(batch[0])):
        #s_pred_list = []
        #if num_outputs==1:
        #s_pred_list = [process_slice(predictions[i])]
        #else:
        #for j in range(num_outputs):
        #s_pred_list.append(process_slice(predictions[j][i]))
        #s_input = process_slice(batch[0][i])
        #if num_outputs==1:
        #s_truth = process_slice(batch[1][i]/2.)
        #else:
        #s_truth = process_slice(batch[1][0][i]/2.)
        #out_image = np.concatenate([s_input]+s_pred_list+[s_truth],
        #axis=1)
        #imsave(os.path.join(save_predictions_to,
        #"{}_{}.png".format(batch_num, i)),
        #out_image)

        # Update metrics
        val_logs = OrderedDict(zip(model.metrics_names, val_metrics))
        val_logs.update({'batch': batch_num, 'size': len(batch[0])})
        val_callbacks.on_batch_end(batch_num, val_logs)

    # Update metrics
    val_callbacks.on_epoch_end(0, val_logs)

    # Output metrics
    for m in val_logs:
        if m not in ['batch', 'size']:
            print("{}: {}".format(m, val_logs[m]))
    def fit(self, X_train, modeldir=".", logdir=".", epochs=2, batch_size=20000):

        input_dim = X_train.shape[1]
        encoding_dim = int(input_dim/2)
        output_dim = input_dim
        print("Using input_dim:  ", input_dim)
        print("Using encoding_dim: ", encoding_dim)
        print("Using output_dim:  ", output_dim)

        L1 = 1000
        L2 = int(L1*2.25)
        L3 = int(L2*0.5)
        L4 = int(L3*0.5)
        L5 = int(L4*0.5)
        L6 = int(L5*0.5)
        D1 = 0.25
        D2 = 0.25
        D3 = 0.25
        D4 = 0.5
        D5 = 0.5
        seed = 0

        model = Sequential([
            Dense(units=L1, input_dim=input_dim, kernel_initializer="normal", activation="tanh"),
            Dropout(D1, seed=seed),
            Dense(units=L2, activation="tanh"),
            Dropout(D2, seed=seed),
            # Dense(L3, kernel_initializer="normal", activation="tanh"),
            # Dropout(D3, seed=seed),
            # Dense(L4, kernel_initializer="normal", activation="tanh"),
            # Dropout(D4, seed=seed),
            # Dense(l\L5, kernel_initializer="normal", activation="tanh"),
            # Dropout(D5, seed=seed),
            # Dense(L6, kernel_initializer="normal", activation="tanh"),
            # Dropout(L6, seed=seed),
            # Dense(output_dim, kernel_initializer="uniform", activity_regularizer=regularizers.l1(1e-5), activation="sigmoid")
            Dense(output_dim, kernel_initializer="uniform", activation="sigmoid")
        ])

        # model = Sequential([
        #     Dense(units=l1, input_dim=input_dim, activation="tanh"),
        #     Dense(encoding_dim, activation="relu"),
        #     Dense(int(encoding_dim / 2), activation="relu"),
        #     Dense(int(encoding_dim / 2), activation="tanh"),
        #     Dense(output_dim, activation="relu")
        #     ])

        optimizer = optimizers.adam(lr=AutoEncoderModel.OPT_LEARNING_RATE)
        # model.compile(optimizer=optimizer, loss="mean_squared_error", metrics=["accuracy"])
        model.compile(optimizer=optimizer, loss="mean_squared_logarithmic_error", metrics=["accuracy"])
        model.summary()
        self._model = model

        # Establish callbacks for training
        modelpath = modeldir + '/' + 'autoencoder-model-checkpoint.h5'
        CHK = ModelCheckpoint(
            modelpath, monitor="val_loss", verbose=1,
            save_best_only=True, save_weights_only=False,
            mode="auto", period=1)
        ES = EarlyStopping(
            monitor="val_loss", min_delta=AutoEncoderModel.ES_MIN_DELTA,
            patience=AutoEncoderModel.ES_PATIENCE, verbose=2, mode="auto")
        TB = TensorBoard(
            log_dir=logdir, histogram_freq=0,
            write_graph=True, write_images=False)
        RLRP = ReduceLROnPlateau(
            monitor="val_loss", factor=AutoEncoderModel.RLRP_FACTOR,
            patience=AutoEncoderModel.RLRP_PATIENCE, min_lr=AutoEncoderModel.RLRP_MIN_LR,
            verbose=1)
        BL = BaseLogger()
        # ROC = ROCCallback.ROCCallback()

        # callbacks=[ES, TB, BL, RLRP, CHK]
        callbacks=[ES, TB, BL, RLRP]
        if self._X_validation is not None:
            print("Using AUCCallback...")
            AUC = AUCCallback.AUCCallback(self, self._X_validation, self._Y_validation, convert=False)
            callbacks.append(AUC)

        print("X_train: ", X_train.shape)

        validation_data = None
        # if self._X_validation is not None:
        #     print("Using validation_data (overrides validation_split)...")
        #     X_validation = self._X_validation
        #     Y_validation = self._Y_validation
        #     validation_data = (X_validation, Y_validation)
        #     print("X_validation: ", X_validation.shape)
        #     print("Y_validation: ", Y_validation.shape)

        # Train the model
        # (NOTE: if validation_data exists then it will OVERRIDE the validation split)
        history = self._model.fit(
            X_train, X_train, batch_size=batch_size, epochs=epochs,
            validation_split=0.2,
            validation_data=validation_data,
            callbacks=callbacks,
            shuffle=True,
            verbose=1)

        return history
Пример #26
0
def main(args):

    try:
        opts, args = getopt.getopt(args, "c:s", ["config="])
    except getopt.GetoptError:
        print('usage: -c config.json')
        sys.exit(2)

    start_from_model = False
    for opt, arg in opts:
        if opt in ("-c", "--config"):
            config_fname = os.path.join('configurations', arg)
        elif opt == '-s':
            start_from_model = True

    if start_from_model:
        filemode = 'a'
    else:
        filemode = 'w'

    log_path = 'logging/vae_nlg_{}'.format(int(round(time.time() * 1000)))
    os.mkdir(log_path)

    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO,
                        filename='{}/evolution.log'.format(log_path),
                        filemode=filemode)

    with open(config_fname, 'r') as json_data:
        config_data = json.load(json_data)

        batch_size = config_data['batch_size']
        epochs = config_data['nb_epochs']
        discriminator_iterations = config_data['discriminator_iterations']
        tweets_path = config_data['tweets_path']
        vocab_path = config_data['vocab_path']
        vocab = cPickle.load(open(join(vocab_path, 'vocabulary.pkl'), 'rb'))

        #== == == == == == =
        # Load all the Data
        #== == == == == == =
        delimiter = ''
        noutputs = 11

        logging.info('Load Training Data')
        train_input, train_output, train_weights, train_lex = load_text_gen_data(
            join(tweets_path, 'trainset.csv'),
            config_data,
            vocab,
            noutputs,
            word_based=False)
        logging.info('Load Validation Data')
        valid_input, valid_output, _, valid_lex = load_text_gen_data(
            join(tweets_path, 'devset.csv'),
            config_data,
            vocab,
            noutputs,
            word_based=False)
        logging.info('Load Output Validation Data')
        valid_dev_input, valid_dev_output, _, valid_dev_lex = load_text_gen_data(
            join(tweets_path, 'devset_reduced.csv'),
            config_data,
            vocab,
            noutputs,
            random_output=False,
            word_based=False)

        step = K.variable(1., name='step_varialbe')
        steps_per_epoch = ceil(train_output[0].shape[0] /
                               config_data['batch_size'])
        # == == == == == == == == == == =
        # Define and load the CNN model
        # == == == == == == == == == == =
        vae_model_train, vae_model_test, vae_vanilla_train_model, vae_vanilla_test_model, discriminator_model, decoder_test, discriminator = get_vae_gan_model(
            config_data, vocab, step)
        with open(os.path.join(log_path, 'models.txt'), 'wt') as fh:
            fh.write('VAE Model Train\n')
            fh.write('---------\n')
            vae_model_train.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('VAE Model Test\n')
            fh.write('--------------\n')
            vae_model_test.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('VAE Model Pretrain\n')
            fh.write('---------------------------\n')
            vae_vanilla_train_model.summary(
                print_fn=lambda x: fh.write(x + '\n'))
            fh.write('VAE Model Pretrain Test\n')
            fh.write('---------------------------\n')
            vae_vanilla_test_model.summary(
                print_fn=lambda x: fh.write(x + '\n'))
            fh.write('Decoder Test\n')
            fh.write('-------------------\n')
            decoder_test.summary(print_fn=lambda x: fh.write(x + '\n'))
            fh.write('Discriminator Models\n')
            fh.write('-------------------\n')
            discriminator_model.summary(print_fn=lambda x: fh.write(x + '\n'))

        terminate_on_nan = TerminateOnNaN()
        output_callback = LexOutputCallback(
            vae_vanilla_test_model,
            valid_dev_input,
            valid_dev_lex,
            1,
            vocab,
            delimiter,
            fname='{}/test_output'.format(log_path))

        #output_callback_full = LexOutputCallback(vae_vanilla_test_model, valid_dev_input, valid_dev_lex, 1, vocab, delimiter, fname='{}/test_output'.format(log_path))
        #
        # vae_vanilla_train_model.fit_generator(
        #     generator=generate_data_stream(config_data['pretrain_path'], config_data, vocab, config_data['batch_size'], noutputs=3),
        #     steps_per_epoch=steps_per_epoch,
        #     epochs=ceil(config_data['pretrain_samples']/config_data['pretrain_samples_per_epoch']),
        #     callbacks=[output_callback, terminate_on_nan],
        #     validation_data=(valid_input, valid_output[:3]),
        # )

        vae_vanilla_train_model.fit(
            x=train_input,
            y=train_output[:2],
            epochs=config_data['pretrain_epochs'],
            batch_size=batch_size,
            validation_data=(valid_input, valid_output[:2]),
            sample_weight=train_weights[:2],
            callbacks=[output_callback, terminate_on_nan])

        terminate_on_nan = TerminateOnNaN()
        model_checkpoint = ModelCheckpoint(
            'models/vae_model/weights.{epoch:02d}.hdf5',
            period=10,
            save_weights_only=True)

        out_labels = [
            'enc_' + s for s in vae_model_train._get_deduped_metrics_names()
        ]
        out_labels += [
            'dis_' + s
            for s in discriminator_model._get_deduped_metrics_names()
        ]

        callback_metrics = out_labels + ['val_' + n for n in out_labels]

        tensorboard = TensorBoard(log_dir='logging/tensorboard',
                                  histogram_freq=0,
                                  write_grads=True,
                                  write_images=True)
        step_callback = StepCallback(step, steps_per_epoch)
        output_callback = LexOutputCallback(
            vae_vanilla_test_model,
            valid_dev_input,
            valid_dev_lex,
            1,
            vocab,
            delimiter,
            fname='{}/test_output'.format(log_path))
        output_callback_full = LexOutputCallback(
            vae_vanilla_test_model,
            valid_input,
            valid_lex,
            5,
            vocab,
            delimiter,
            fname='{}/test_valid_output'.format(log_path))
        callbacks = CallbackList([
            BaseLogger(),
            ProgbarLogger(count_mode='steps'), step_callback, tensorboard,
            output_callback, output_callback_full, model_checkpoint,
            terminate_on_nan
        ])

        callbacks.set_model(vae_model_train)
        callbacks.set_params({
            'batch_size': batch_size,
            'epochs': epochs,
            'steps': steps_per_epoch,
            'verbose': True,
            'do_validation': True,
            'metrics': callback_metrics or [],
        })

        callbacks.on_train_begin()
        initial_epoch = 0
        num_train_samples = train_input[0].shape[0]
        index_array = np.arange(num_train_samples)

        steps = 0
        epoch = initial_epoch
        while epoch < epochs:
            epoch_logs = {}
            callbacks.on_epoch_begin(epoch)
            index_array = _batch_shuffle(index_array, batch_size)

            steps_done = 0
            batches = _make_batches(num_train_samples, batch_size)
            for batch_index, (batch_start, batch_end) in enumerate(batches):
                batch_logs = {}
                batch_ids = index_array[batch_start:batch_end]
                X = _slice_arrays(train_input, batch_ids)
                y = _slice_arrays(train_output, batch_ids)
                sample_weights = _slice_arrays(train_weights, batch_ids)

                batch_logs['batch'] = batch_index
                batch_logs['size'] = batch_size

                callbacks.on_batch_begin(batch_index, batch_logs)

                set_trainability(discriminator, trainable=False)
                enc_outs = vae_model_train.train_on_batch(
                    x=X, y=y, sample_weight=sample_weights)

                set_trainability(discriminator, trainable=True)
                list_disc_loss_real = []
                if steps < 25 or steps % 500 == 0:
                    disc_iterations = 25
                else:
                    disc_iterations = discriminator_iterations
                for disc_it in range(disc_iterations):
                    real_idx = np.random.choice(train_input[0].shape[0],
                                                len(batch_ids),
                                                replace=False)

                    disX_train = train_input[-1][
                        real_idx]  #take input 8 as train input and the rest as targets
                    disy_train = [x[real_idx] for x in train_input[:8]
                                  ]  #take input 1-7 as targets

                    #train on real data
                    dis_outs_real = discriminator_model.train_on_batch(
                        disX_train, disy_train)

                    list_disc_loss_real.append(dis_outs_real)

                loss_d_real = np.mean(list_disc_loss_real, axis=0)

                outs = np.concatenate((enc_outs, loss_d_real))

                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o

                callbacks.on_batch_end(batch_index, batch_logs)
                epoch_logs = {}
                batch_index += 1
                steps_done += 1
                steps += 1
                # Epoch finished.
                if steps_done >= steps_per_epoch:
                    valid_len = valid_output[0].shape[0]
                    enc_val_outs = vae_model_train.evaluate(valid_input,
                                                            valid_output,
                                                            verbose=False)
                    dis_val_outs = discriminator_model.evaluate(
                        valid_input[-1], valid_input[:8], verbose=False)

                    val_outs = enc_val_outs + dis_val_outs

                    #val_outs = full_model.evaluate(valid_input, valid_output, verbose=False)

                    if not isinstance(val_outs, list):
                        val_outs = [val_outs]
                    # Same labels assumed.
                    for l, o in zip(out_labels, val_outs):
                        epoch_logs['val_' + l] = o

            callbacks.on_epoch_end(epoch, epoch_logs)
            epoch += 1

        callbacks.on_train_end()
Пример #27
0
    def fit(self,
            x,
            y,
            batch_size=None,
            nsteps=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_data=None):
        assert self.is_compiled, "Must compile model first"
        assert epochs > 0
        x = x if type(x) is list else [x]
        y = y if type(y) is list else [y]
        if nsteps is None:
            total_len = len(y[0]) if type(y) is list else len(y)
            nsteps = total_len // batch_size
        # BaseLogger should always be the first metric since it computes the stats on epoch end
        base_logger = BaseLogger(
            stateful_metrics=["val_%s" % m for m in self.metrics_name] +
            ['val_loss', 'size'])
        base_logger_params = {'metrics': ['loss'] + self.metrics_name}
        if validation_data:
            base_logger_params['metrics'] += [
                'val_%s' % m for m in base_logger_params['metrics']
            ]
        base_logger.set_params(base_logger_params)
        hist = History()
        if callbacks is None:
            callbacks = [base_logger] + [hist]
        elif type(callbacks) is list:
            callbacks = [base_logger] + callbacks + [hist]
        else:
            callbacks = [base_logger] + [callbacks] + [hist]
        callback_list = CallbackList(callbacks=callbacks)
        callback_list.set_model(self)
        callback_list.on_train_begin()
        self.callbacks = callback_list
        for epoch in range(epochs):
            g = batchify(x, y, batch_size) if batch_size else None
            t = trange(nsteps) if verbose == 1 else range(nsteps)
            callback_list.on_epoch_begin(epoch)
            for it in t:
                x_, y_ = next(g) if g else (None, None)
                batch_logs = self.train_on_batch(x_, y_)
                callback_list.on_batch_end(it, batch_logs)
                curr_loss = base_logger.totals['loss'] / base_logger.seen
                if verbose == 1:
                    t.set_postfix(loss="%.4f" % curr_loss)
                if verbose == 2:
                    if it % 1000 == 0:
                        print("%s %i/%i, loss=%.5f" %
                              (datetime.datetime.now().strftime("%H:%M:%S"),
                               it, nsteps, curr_loss),
                              flush=True)

            if validation_data:
                val_logs = self.evaluate(validation_data[0],
                                         validation_data[1])
                base_logger.on_batch_end(None, val_logs)

            epoch_logs = {}
            callback_list.on_epoch_end(epoch=epoch, logs=epoch_logs)

            if verbose:
                if validation_data:
                    to_print = ['loss'] + self.metrics_name + ['val_loss'] + [
                        'val_%s' % m for m in self.metrics_name
                    ]
                else:
                    to_print = ['loss'] + self.metrics_name
                prog = ", ".join([
                    "%s=%.4f" % (name, hist.history[name][-1])
                    for name in to_print
                ])
                print("Epoch %i, %s" % (epoch, prog), flush=True)

            if self.stop_training:
                break

        return hist.history
Пример #28
0
 def monkey_patched_BaseLogger(*args, **kwargs):
     return KerasAggregateCallback(BaseLogger(*args, **kwargs),
                                   NeptuneLogger(experiment_getter=experiment_getter))
Пример #29
0
    def fit_generator(self,
                      generator,
                      epochs=1,
                      validation_data=None,
                      callbacks=None,
                      verbose=True):
        method = self._model.optimizer.method
        x0 = self._collect_weights()
        history = History()
        _callbacks = [BaseLogger(stateful_metrics=self._model.metrics_names)]
        _callbacks += (callbacks or []) + [history]
        callback_list = CallbackList(_callbacks)
        callback_list.set_model(self._model)
        callback_list.set_params({
            'epochs': epochs,
            'verbose': False,
            'metrics': list(self._model.metrics_names),
        })
        state = {
            'epoch': 0,
            'verbose': verbose,
            'callbacks': callback_list,
            'in_epoch': False,
            'epoch_logs': {},
        }
        min_options = {
            'maxiter': epochs,
            'maxfun': epochs * 10,
            'maxcor': 50,
            'maxls': 50,
            'ftol': np.finfo(float).eps,
            'gtol': 1e-10,
            'eps': 1e-8,
        }

        val_generator = None
        if validation_data is not None:
            if isinstance(validation_data, keras.utils.Sequence):
                val_generator = validation_data
            elif isinstance(validation_data,
                            tuple) and len(validation_data) == 2:
                val_generator = GeneratorWrapper(*validation_data)

        def on_iteration_end(xk):
            cb = state['callbacks']
            if val_generator is not None:
                self._validate(xk, val_generator, state)
            cb.on_epoch_end(state['epoch'], state['epoch_logs'])
            # if state['verbose']:
            #     epoch_logs = state['epoch_logs']
            #     print('epoch: ', state['epoch'],
            #           ', '.join([' {0}: {1:.3e}'.format(k, v) for k, v in epoch_logs.items()]))
            state['epoch'] += 1
            state['in_epoch'] = False
            state['epoch_logs'] = {}

        callback_list.on_train_begin()
        result = minimize(self._fun_generator,
                          x0,
                          method=method,
                          jac=True,
                          options=min_options,
                          callback=on_iteration_end,
                          args=(generator, state))
        self._update_weights(result['x'])
        callback_list.on_train_end()
        return history