def load_data(): """ Load CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples,), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000: i * 10000, :, :, :] = data y_train[(i - 1) * 10000: i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return {'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test}
def __load_cifar10(): """Loads CIFAR10 dataset. """ path = os.path.expanduser("~/.keras/datasets/cifar-10-batches-py") num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): #dirname = 'cifar-10-batches-py' #origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' #path = get_file(dirname, origin=origin, untar=True, cache_dir="/tmp/keras") path = "/dev/shm/keras/datasets/cifar-10-batches-py" num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def __load_cifar100(): """Loads CIFAR100 dataset. # Arguments label_mode: one of "fine", "coarse". # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. # Raises ValueError: in case of invalid `label_mode`. """ label_mode = 'fine' path = os.path.expanduser("~/.keras/datasets/cifar-100-python") fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def get_data(path, num_classes=10): num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return (x_train, y_train), (x_test, y_test)
def load_cifar10(): # download and extract data dirname = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin, untar=True, cache_dir='Z:\\', cache_subdir="datasets") num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples, ), dtype='uint8') # load train data for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels # load test data fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if backend.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def input_data(flag): if flag == 'mnist': # path = "D:\\softfiles\\workspace\\data\\tensorflow\\data\\mnist_data\\mnist.npz" with np.load(path) as f: x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] return (x_train, y_train), (x_test, y_test) elif flag == 'cifar10': #'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = "D:\\softfiles\\workspace\\data\\tensorflow\\data\\cifar10\\cifar-10-batches-py" num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_cifar10(): if platform.system() != "Darwin": (train_x, train_y), (test_x, test_y) = cifar10.load_data() return (train_x, train_y), (test_x, test_y) dpath = os.environ["DATASETS"] if (dpath == None): print("Missing DATASETS env var.") exit(-1) path = os.path.join(dpath, "cifar10") num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def get_data( origin: str ) -> Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]: # This is copied from keras.datasets.cifar10 and modified to support # a custom origin URL. dirname = "cifar-10-batches-py" path = get_file(dirname, origin=origin, untar=True) num_train_samples = 50000 train_data = np.empty((num_train_samples, 3, 32, 32), dtype="uint8") train_labels = np.empty((num_train_samples, ), dtype="uint8") for i in range(1, 6): fpath = os.path.join(path, "data_batch_" + str(i)) ( train_data[(i - 1) * 10000:i * 10000, :, :, :], train_labels[(i - 1) * 10000:i * 10000], ) = load_batch(fpath) fpath = os.path.join(path, "test_batch") test_data, test_labels = load_batch(fpath) train_labels = np.reshape(train_labels, (len(train_labels), 1)) test_labels = np.reshape(test_labels, (len(test_labels), 1)) if keras.backend.image_data_format() == "channels_last": train_data = train_data.transpose(0, 2, 3, 1) test_data = test_data.transpose(0, 2, 3, 1) return (train_data, train_labels), (test_data, test_labels)
def load_cifar_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ # dirname = 'E:/dl_data/' # origin = 'cifar-10-python.tar.gz' path = get_file( '3.3_courses/10_dl1/cifar-10-batches-py', '') num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples,), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000: i * 10000, :, :, :] = data y_train[(i - 1) * 10000: i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' #/home/mainspring/.keras/datasets/cifar-10-batches-py/data_batch_1 path = os.path.join('/home/mainspring/.keras/datasets', dirname) #data_utils.get_file(dirname, origin=origin, untar=True) nb_train_samples = 50000 x_train = np.zeros((nb_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((nb_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = cifar.load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = cifar.load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_dim_ordering() == 'tf': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) # if K.image_data_format() == 'channels_last': # x_train = x_train.transpose(0, 2, 3, 1) # x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ path = '/home/zarif/.keras/datasets/cifar-10-batches-py' num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ path = '/Users/zuoyuan/.keras/datasets/cifar-10-batches-py' num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples,), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000: i * 10000, :, :, :], y_train[(i - 1) * 10000: i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(label_mode='fine'): """Loads CIFAR100 dataset. # Arguments label_mode: one of "fine", "coarse". # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. # Raises ValueError: in case of invalid `label_mode`. """ if label_mode not in ['fine', 'coarse']: raise ValueError('label_mode must be one of "fine" "coarse".') dirname = 'cifar-100-python' origin = 'http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return {'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test}
def load_data(label_mode='fine'): """Loads [CIFAR100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 100 fine-grained classes that are grouped into 20 coarse-grained classes. See more info at the [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). Args: label_mode: one of "fine", "coarse". If it is "fine" the category labels are the fine-grained labels, if it is "coarse" the output labels are the coarse-grained superclasses. Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. **x_train, x_test**: uint8 arrays of RGB image data with shape `(num_samples, 3, 32, 32)` if `tf.keras.backend.image_data_format()` is `'channels_first'`, or `(num_samples, 32, 32, 3)` if the data format is `'channels_last'`. **y_train, y_test**: uint8 arrays of category labels with shape (num_samples, 1). Raises: ValueError: in case of invalid `label_mode`. """ if label_mode not in ['fine', 'coarse']: raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`.') dirname = 'cifar-100-python' origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' path = get_file( dirname, origin=origin, untar=True, file_hash= '85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7') fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads [CIFAR10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories. See more info at the [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. **x_train, x_test**: uint8 arrays of RGB image data with shape `(num_samples, 3, 32, 32)` if `tf.keras.backend.image_data_format()` is `'channels_first'`, or `(num_samples, 32, 32, 3)` if the data format is `'channels_last'`. **y_train, y_test**: uint8 arrays of category labels (integers in range 0-9) each with shape (num_samples, 1). """ dirname = 'cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file( dirname, origin=origin, untar=True, file_hash= '6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce') num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_test = x_test.astype(x_train.dtype) y_test = y_test.astype(y_train.dtype) return (x_train, y_train), (x_test, y_test)
def load_data(config): """ Load CIFAR100 dataset. Parameters ---------- label_mode: one of "fine", "coarse". Returns ------- Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. Raises ------ ValueError: in case of invalid `label_mode`. """ label_mode = 'fine' if label_mode not in ['fine', 'coarse']: raise ValueError('label_mode must be one of "fine" "coarse".') dirname = 'cifar-100-python' origin = 'http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.10, random_state=42, stratify=y_train) return { 'x_train': x_train, 'y_train': y_train, 'x_val': x_val, 'y_val': y_val, 'x_test': x_test, 'y_test': y_test }
def load_data(path=os.path.join(".", "cifar-100-python"), label_mode='fine'): fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_cifar10(raw=False): """Loads CIFAR10 dataset from config.CIFAR10_PATH or downloads it if necessary. :param raw: `True` if no preprocessing should be applied to the data. Otherwise, data is normalized to 1. :type raw: `bool` :return: `(x_train, y_train), (x_test, y_test), min, max` :rtype: `(np.ndarray, np.ndarray), (np.ndarray, np.ndarray), float, float` """ import keras.backend as k from keras.datasets.cifar import load_batch from keras.utils.data_utils import get_file from art import DATA_PATH min_, max_ = 0., 1. path = get_file( 'cifar-10-batches-py', untar=True, cache_subdir=DATA_PATH, origin='http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz') num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype=np.uint8) y_train = np.zeros((num_train_samples, ), dtype=np.uint8) for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if k.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) min_, max_ = 0, 255 if not raw: min_, max_ = 0., 1. x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_
def get_in_dist_train_data(): """ Loads a small batch of CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) num_batches = 1 # 10K, 10K num_train_samples = 10000 * num_batches x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples,), dtype='uint8') # Load only one of the 5 train batches for i in range(1, 1 + num_batches): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000: i * 10000, :, :, :] = data # Since in-dist images should have 0 as label # y_train[(i - 1) * 10000: i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) # Since in-dist images should have 0 as label # Number of test images is 10000 y_test = np.zeros((10000,), dtype='uint8') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train = x_train[:4000] y_train = y_train[:4000] x_test = x_test[:6000] y_test = y_test[:6000] return (x_train, y_train), (x_test, y_test)
def load_data(config): """ Load CIFAR10 dataset. Returns ------- Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.10, random_state=42, stratify=y_train) return { 'x_train': x_train, 'y_train': y_train, 'x_val': x_val, 'y_val': y_val, 'x_test': x_test, 'y_test': y_test }
def load_data(config): """ Load CIFAR100 dataset. Parameters ---------- label_mode: one of "fine", "coarse". Returns ------- Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. Raises ------ ValueError: in case of invalid `label_mode`. """ label_mode = 'fine' if label_mode not in ['fine', 'coarse']: raise ValueError('label_mode must be one of "fine" "coarse".') dirname = 'cifar-100-python' origin = 'http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.10, random_state=42, stratify=y_train) return {'x_train': x_train, 'y_train': y_train, 'x_val': x_val, 'y_val': y_val, 'x_test': x_test, 'y_test': y_test}
def load_data(dataset_path: str = None, label_mode='fine'): if dataset_path: fpath = os.path.join(dataset_path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(dataset_path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return x_train, y_train, x_test, y_test else: (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data(label_mode='fine') return x_train, y_train, x_test, y_test
def load_data(dest=None): """Loads CIFAR10 dataset. Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' dest = HERE + '/DATA' if dest is None: dest = '/projects/datascience/username/nas4candle.nasapi/benchmark/cifar10Nas/DATA' else: dest = os.path.abspath(os.path.expanduser(dest)) print(f"getfile(origin={origin}, dest={dest})") path = get_file('cifar-10-batches-py', origin=origin, untar=True, cache_subdir=dest) num_train_samples = 50000 train_X = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') train_y = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (train_X[(i - 1) * 10000:i * 10000, :, :, :], train_y[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') test_X, test_y = load_batch(fpath) train_y = np.reshape(train_y, (len(train_y))) test_y = np.reshape(test_y, (len(test_y))) train_X = np.true_divide(train_X, 255) test_X = np.true_divide(test_X, 255) if K.image_data_format() == 'channels_last': train_X = train_X.transpose(0, 2, 3, 1) test_X = test_X.transpose(0, 2, 3, 1) return (train_X, train_y), (test_X, test_y)
def load_data(download_path=os.getcwd()): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' if not os.path.exists(os.path.join(download_path, dirname)): if not os.path.exists(download_path): os.mkdir(download_path) path = get_file(dirname, origin=origin, untar=True, cache_dir=download_path, cache_subdir='') else: path = os.path.join(download_path, dirname) print("Dataset already exists at: {}".format(path)) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_cifar10(): """Loads CIFAR10 dataset from config.CIFAR10_PATH or downloads it if necessary. :return: (x_train, y_train), (x_test, y_test), min, max :rtype: (tuple of numpy.ndarray), (tuple of numpy.ndarray), float, float """ from config import CIFAR10_PATH from keras.datasets.cifar import load_batch from keras.utils.data_utils import get_file min_, max_ = 0., 1. path = get_file( 'cifar-10-batches-py', untar=True, cache_subdir=CIFAR10_PATH, origin='http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz') num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype=np.uint8) y_train = np.zeros((num_train_samples, ), dtype=np.uint8) for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if k.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_
def load_data(dirname): """Loads CIFAR10 dataset locally. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ try: if dirname is not None: path = os.path.abspath(dirname) else: dirname_remote = 'cifar-10-batches-py' origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname_remote, origin=origin, untar=True) num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.zeros((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000:i * 10000, :, :, :] = data y_train[(i - 1) * 10000:i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test) except FileNotFoundError as err: print( "ERROR: THERE AREN'T LOCAL FILES, IF YOU WANT TO DOWNLOAD THE DATASET, SET dirname TO None. \n {0}" .format(err))
def load_data(): dirname = "cifar-10-batches-py" nb_train_samples = 50000 X_train = np.zeros((nb_train_samples, 3, 32, 32), dtype="uint8") y_train = np.zeros((nb_train_samples,), dtype="uint8") for i in range(1, 6): fpath = os.path.join('/day2/datasets', dirname, 'data_batch_' + str(i)) data, labels = load_batch(fpath) X_train[(i-1)*10000:i*10000, :, :, :] = data y_train[(i-1)*10000:i*10000] = labels fpath = os.path.join('/day2/datasets', dirname, 'test_batch') X_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) return (X_train, y_train), (X_test, y_test)
def load_data(label_mode='coarse'): """Loads CIFAR100 dataset. # Arguments label_mode: one of "fine", "coarse". # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. # Raises ValueError: in case of invalid `label_mode`. """ if label_mode not in ['fine', 'coarse']: raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`.') path = './cifar-100-python' # if you already download data in local path, don't download # but you don't have data in local path, then download from website try: print("already downloaded") fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') except: dirname = 'cifar-100-python' origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) fpath = os.path.join(path, 'train') x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') fpath = os.path.join(path, 'test') x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(origin, dest): """Loads CIFAR10 dataset. Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ #origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' if dest is None: dest = 'datasets' else: dest = os.path.abspath(os.path.expanduser(dest)) print(f"getfile(origin={origin}, dest={dest})") path = get_file('cifar-10-batches-py', origin='file://' + origin, untar=True, cache_subdir=dest) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def cifar10_load_data(): path = 'cifar10' num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ Image = np.load('/Users/pc/Downloads/MontgomerySet/CXR_png') ClinicalReading = np.load( '/Users/pc/Downloads/MontgomerySet/ClinicalReadings') dirname = '/Users/pc/Downloads/cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) # create function to transform the data # create fucntiom to take in the path num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples, ), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
def load_data(data_file): """Loads CIFAR10 dataset. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ num_train_samples = 50000 x_train, y_train = load_batch(data_file) if K.image_data_format() != 'channels_last': x_train = x_train.transpose(0, 3, 1, 2) return (x_train, y_train), (x_train, y_train)
def load_data(label_mode='fine'): dirname = "cifar-10-batches-py" origin = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" path = get_file(dirname, origin=origin, untar=True) nb_test_samples = 10000 nb_train_samples = 50000 X_train2 = np.zeros((nb_train_samples, 3, 32, 32), dtype="uint8") y_train2 = np.zeros((nb_train_samples,), dtype="uint8") for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = cifar.load_batch(fpath) X_train2[(i-1)*10000:i*10000, :, :, :] = data y_train2[(i-1)*10000:i*10000] = labels fpath = os.path.join(path, 'test_batch') X_test2, y_test2 = cifar.load_batch(fpath) y_train2 = np.reshape(y_train2, (len(y_train2), 1)) y_test2 = np.reshape(y_test2, (len(y_test2), 1)) ################################################################ if label_mode not in ['fine', 'coarse']: raise Exception('label_mode must be one of "fine" "coarse".') dirname = "cifar-100-python" origin = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" path = get_file(dirname, origin=origin, untar=True) nb_test_samples = 500 nb_train_samples = 2500 fpath = os.path.join(path, 'train') X_train1, y_train1 = load_batch(fpath, label_key=label_mode+'_labels') fpath = os.path.join(path, 'test') X_test1, y_test1 = load_batch(fpath, label_key=label_mode+'_labels') y_train1 = np.reshape(y_train1, (len(y_train1), 1)) y_test1 = np.reshape(y_test1, (len(y_test1), 1)) ##################################################################### print(type(X_train1)) print(type(X_train2)) X_train=X_train1.tolist()+X_train2.tolist() print("X_train transformation worked") X_test=X_test1.tolist()+X_test2.tolist() print("X_test transformation worked") X_test=asarray(X_test) print("X_test revertion worked") X_train=asarray(X_train) print("X_train revertion worked") print(type(y_test1)) print(type(y_test2)) y_test=y_test1.tolist()+y_test2.tolist() y_train=y_train1.tolist()+y_train2.tolist() y_test=asarray(y_test) y_train=asarray(y_train) nb_test_samples=len(X_test) print(nb_test_samples) nb_train_samples=len(X_train) print(nb_train_samples) return (X_train, y_train), (X_test, y_test)