def load(self, config_path, weight_path): mc = self.config.model resources = self.config.resource if mc.distributed and config_path == resources.model_best_config_path: try: logger.debug("loading model from server") ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) ftp_connection.retrbinary("RETR model_best_config.json", open(config_path, 'wb').write) ftp_connection.retrbinary("RETR model_best_weight.h5", open(weight_path, 'wb').write) ftp_connection.quit() except: pass from tensorflow import get_default_graph if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.graph = get_default_graph() self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") #print(self.model.summary) return True else: logger.debug( f"model files does not exist at {config_path} and {weight_path}" ) return False
def load(self, config_path, weight_path): mc = self.config.model resources = self.config.resource if mc.distributed and config_path == resources.model_best_config_path: try: logger.debug("loading model from server") ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) ftp_connection.retrbinary("RETR model_best_config.json", open(config_path, 'wb').write) ftp_connection.retrbinary("RETR model_best_weight.h5", open(weight_path, 'wb').write) ftp_connection.quit() except: pass if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug("loading model from %s" % (config_path)) with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) logger.debug("loaded model digest = %s" % (self.digest)) return True else: logger.debug("model files does not exist at %s and %s" % (config_path, weight_path)) return False
def load(self, config_path, weight_path): mc = self.config.model resources = self.config.resource #if mc.distributed and config_path == resources.model_best_config_path: if hasattr( mc, "distributed" ) and mc.distributed == True and config_path == resources.model_best_config_path: logger.debug(f"loading model from server") ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) ftp_connection.retrbinary("RETR model_best_config.json", open(config_path, 'wb').write) ftp_connection.retrbinary("RETR model_best_weight.h5", open(weight_path, 'wb').write) ftp_connection.quit() if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug( f"model files does not exist at {config_path} and {weight_path}" ) return False
def load(self, config_path, weight_path): """ :param str config_path: path to the file containing the entire configuration :param str weight_path: path to the file containing the model weights :return: true iff successful in loading """ mc = self.config.model resources = self.config.resource if mc.distributed and config_path == resources.model_best_config_path: try: ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) ftp_connection.retrbinary("RETR model_best_config.json", open(config_path, 'wb').write) ftp_connection.retrbinary("RETR model_best_weight.h5", open(weight_path, 'wb').write) ftp_connection.quit() except: pass if os.path.exists(config_path) and os.path.exists(weight_path): with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) return True else: return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: config = json.load(f) if 'weight_digest' in config: exp_digest = config['weight_digest'] act_digest = self.fetch_digest(weight_path) if exp_digest != act_digest: logger.debug( f"exp weight digest {exp_digest}, act {act_digest}" ) return None try: steps = int(config['steps']) except ValueError: steps = None del config['steps'] self.model = Model.from_config(config) self.model.load_weights(weight_path) self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return steps else: logger.debug( f"model files does not exist at {config_path} and {weight_path}" ) return None
def load(self, config_path, model_path): # load model print('restore model...') if os.path.exists(config_path) and os.path.exists(model_path): with open(config_path, 'r') as fp: self.model = Model.from_config(json.load(fp)) self.model.load_weights(model_path) return True return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug(f"model files does not exist at {config_path} and {weight_path}") return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): print("loading model from ", config_path) with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.digest = self.fetch_digest(weight_path) print("loaded model digest = ", self.digest) return True else: print("model files does not exist at ", config_path, " and ", weight_path) return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.digest = self.fetch_digest(weight_path) self.graph = tf.get_default_graph() logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug(f"model files does not exist at {config_path} and {weight_path}") return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): print(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.graph = tf.get_default_graph() print(f"loaded model digest = {self.fetch_digest(weight_path)}") return True else: print( f"model files does not exist at {config_path} and {weight_path}" ) return False
def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.graph = get_default_graph() # self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug( f"model files do not exist at {config_path} and {weight_path}") return False
def load(self, config_path: str, weight_path: str) -> bool: if os.path.exists(weight_path): # os.path.exists(config_path) and logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.model.compile( loss='mse', optimizer=Adam(lr=self.config.model.learning_rate)) self.model.summary() self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug( f"model files does not exist at {config_path} and {weight_path}" ) return False
def Load(self, configPath, weightPath): if os.access(configPath, os.F_OK): while os.access(configPath, os.W_OK) == False or os.access( weightPath, os.W_OK) == False: time.sleep(0.001) while True: try: with open(configPath, "rt") as f: config = json.load(f) self.OptimizeCount = config["OptimizeCount"] self.TimeLimit = config["TimeLimit"] self.Model = Model.from_config(config) self.Model.load_weights(weightPath) break except: time.sleep(0.1)
def load(self, config_path, weight_path): """ :param str config_path: path to the file containing the entire configuration :param str weight_path: path to the file containing the model weights :return: true iff successful in loading """ mc = self.config.model resources = self.config.resource if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug(f"model files does not exist at {config_path} and {weight_path}") return False