Пример #1
0
def test1():
    seq_size = 10
    batch_size = 10 
    rnn_size = 1
    xin = Input(batch_shape=(batch_size, seq_size,1))
    xtop = Input(batch_shape=(batch_size, seq_size))
    xbranch, xsummary = RTTN(rnn_size, return_sequences=True)([xin, xtop])

    model = Model(input=[xin, xtop], output=[xbranch, xsummary])
    model.compile(loss='MSE', optimizer='SGD')
    data_gen = generate_data_batch(batch_size, seq_size)
    model.fit_generator(generator=data_gen, samples_per_epoch=1000, nb_epoch=100)
predictions = Dense(12, activation='softmax')(x)

model = Model(input=base_model.input, output=predictions)

# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
    layer.trainable = False

# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit_generator(train_generator,
                    samples_per_epoch=20000,
                    nb_epoch=10,
                    callbacks=[TensorBoard(log_dir='/tmp/attempt1')])

# Save the top-only trained model.
model.save('object_classifierfit1.h5')

for i, layer in enumerate(base_model.layers):
    print(i, layer.name, "Input: ", layer.input_shape, "Output: ",
          layer.output_shape)

# Unlcok the "bottom" of the model and lock the "top"
for layer in model.layers[:172]:
    layer.trainable = False
for layer in model.layers[172:]:
    layer.trainable = True
Пример #3
0
                                   height_shift_range=0.1,
                                   shear_range=0.,
                                   zoom_range=0.,
                                   channel_shift_range=0.,
                                   fill_mode='constant',
                                   cval=0.,
                                   horizontal_flip=False,
                                   vertical_flip=False,
                                   dim_ordering='tf')

datagen.fit(data_images_train)

# Model saving callback
checkpointer = ModelCheckpoint(filepath=WEIGHTS_SEGMENT_FILEPATH,
                               verbose=1,
                               save_best_only=True)

# Early stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=20)

history = model_segment.fit_generator(
    datagen.flow(data_images_train, data_masks_train, batch_size=batch_size),
    samples_per_epoch=data_images_train.shape[0],
    nb_epoch=nb_epoch,
    verbose=2,
    validation_data=(data_images_val, data_masks_val[:, :, :, 0]),
    callbacks=[checkpointer, early_stopping])

with open(HISTORY_SEGMENT_FILEPATH, 'w') as f_out:
    json.dump(history.history, f_out)
Пример #4
0
class FergusNModel(object):
    def __init__(self, igor):

        now = datetime.now()
        self.run_name = "fergusn_{}mo_{}day_{}hr_{}min".format(
            now.month, now.day, now.hour, now.minute)
        log_location = join(igor.log_dir, self.run_name + ".log")
        self.logger = igor.logger = make_logger(igor, log_location)
        igor.verify_directories()
        self.igor = igor

    @classmethod
    def from_yaml(cls, yamlfile, kwargs=None):
        igor = Igor.from_file(yamlfile)
        igor.prep()
        model = cls(igor)
        model.make(kwargs)
        return model

    @classmethod
    def from_config(cls, config, kwargs=None):
        igor = Igor(config)
        model = cls(igor)
        igor.prep()
        model.make(kwargs)
        return model

    def load_checkpoint_weights(self):
        weight_file = join(self.igor.model_location, self.igor.saving_prefix,
                           self.igor.checkpoint_weights)
        if exists(weight_file):
            self.logger.info("+ Loading checkpoint weights")
            self.model.load_weights(weight_file, by_name=True)
        else:
            self.logger.warning(
                "- Checkpoint weights do not exist; {}".format(weight_file))

    def plot(self):
        filename = join(self.igor.model_location, self.igor.saving_prefix,
                        'model_visualization.png')
        kplot(self.model, to_file=filename)
        self.logger.debug("+ Model visualized at {}".format(filename))

    def make(self, theano_kwargs=None):
        '''Make the model and compile it. 

        Igor's config options control everything.  

        Arg:
            theano_kwargs as dict for debugging theano or submitting something custom
        '''

        if self.igor.embedding_type == "convolutional":
            make_convolutional_embedding(self.igor)
        elif self.igor.embedding_type == "token":
            make_token_embedding(self.igor)
        elif self.igor.embedding_type == "shallowconv":
            make_shallow_convolutional_embedding(self.igor)
        elif self.igor.embedding_type == "minimaltoken":
            make_minimal_token_embedding(self.igor)
        else:
            raise Exception("Incorrect embedding type")

        B = self.igor.batch_size
        spine_input_shape = (B, self.igor.max_num_supertags)
        child_input_shape = (B, 1)
        parent_input_shape = (B, 1)

        E, V = self.igor.word_embedding_size, self.igor.word_vocab_size  # for word embeddings

        repeat_N = self.igor.max_num_supertags  # for lex
        mlp_size = self.igor.mlp_size

        ## dropout parameters
        p_emb = self.igor.p_emb_dropout
        p_W = self.igor.p_W_dropout
        p_U = self.igor.p_U_dropout
        w_decay = self.igor.weight_decay
        p_mlp = self.igor.p_mlp_dropout

        def predict_params():
            return {
                'output_dim': 1,
                'W_regularizer': l2(w_decay),
                'activation': 'relu',
                'b_regularizer': l2(w_decay)
            }

        dspineset_in = Input(batch_shape=spine_input_shape,
                             name='daughter_spineset_in',
                             dtype='int32')
        pspineset_in = Input(batch_shape=spine_input_shape,
                             name='parent_spineset_in',
                             dtype='int32')
        dhead_in = Input(batch_shape=child_input_shape,
                         name='daughter_head_input',
                         dtype='int32')
        phead_in = Input(batch_shape=parent_input_shape,
                         name='parent_head_input',
                         dtype='int32')
        dspine_in = Input(batch_shape=child_input_shape,
                          name='daughter_spine_input',
                          dtype='int32')
        inputs = [dspineset_in, pspineset_in, dhead_in, phead_in, dspine_in]

        ### Layer functions
        ############# Convert the word indices to vectors
        F_embedword = Embedding(input_dim=V,
                                output_dim=E,
                                mask_zero=True,
                                W_regularizer=l2(w_decay),
                                dropout=p_emb)

        if self.igor.saved_embeddings is not None:
            self.logger.info("+ Cached embeddings loaded")
            F_embedword.initial_weights = [self.igor.saved_embeddings]

        ###### Prediction Functions
        ## these functions learn a vector which turns a tensor into a matrix of probabilities

        ### P(Parent supertag | Child, Context)
        F_parent_predict = ProbabilityTensor(
            name='parent_predictions',
            dense_function=Dense(**predict_params()))
        ### P(Leaf supertag)
        F_leaf_predict = ProbabilityTensor(
            name='leaf_predictions', dense_function=Dense(**predict_params()))

        ###### Network functions.
        ##### Input word, correct its dimensions (basically squash in a certain way)
        F_singleword = compose(Fix(), F_embedword)
        ##### Input spine, correct diemnsions, broadcast across 1st dimension
        F_singlespine = compose(RepeatVector(repeat_N), Fix(),
                                self.igor.F_embedspine)
        ##### Concatenate and map to a single space
        F_alignlex = compose(
            RepeatVector(repeat_N), Dropout(p_mlp),
            Dense(mlp_size, activation='relu', name='dense_align_lex'), concat)

        F_alignall = compose(
            Distribute(Dropout(p_mlp), name='distribute_align_all_dropout'),
            Distribute(Dense(mlp_size,
                             activation='relu',
                             name='align_all_dense'),
                       name='distribute_align_all_dense'), concat)
        F_alignleaf = compose(
            Distribute(
                Dropout(p_mlp * 0.66), name='distribute_leaf_dropout'
            ),  ### need a separate oen because the 'concat' is different for the two situations
            Distribute(Dense(mlp_size, activation='relu', name='leaf_dense'),
                       name='distribute_leaf_dense'),
            concat)

        ### embed and form all of the inputs into their components
        ### note: spines == supertags. early word choice, haven't refactored.
        leaf_spines = self.igor.F_embedspine(dspineset_in)
        pspine_context = self.igor.F_embedspine(pspineset_in)
        dspine_single = F_singlespine(dspine_in)

        dhead = F_singleword(dhead_in)
        phead = F_singleword(phead_in)

        ### combine the lexical material
        lexical_context = F_alignlex([dhead, phead])

        #### P(Parent Supertag | Daughter Supertag, Lexical Context)
        ### we know the daughter spine, want to know the parent spine
        ### size is (batch, num_supertags)
        parent_problem = F_alignall(
            [lexical_context, dspine_single, pspine_context])

        ### we don't have the parent, we just have a leaf
        leaf_problem = F_alignleaf([lexical_context, leaf_spines])

        parent_predictions = F_parent_predict(parent_problem)
        leaf_predictions = F_leaf_predict(leaf_problem)
        predictions = [parent_predictions, leaf_predictions]

        theano_kwargs = theano_kwargs or {}
        ## make it quick so i can load in the weights.
        self.model = Model(input=inputs,
                           output=predictions,
                           preloaded_data=self.igor.preloaded_data,
                           **theano_kwargs)

        #mask_cache = traverse_nodes(parent_prediction)
        #desired_masks = ['merge_3.in.mask.0']
        #self.p_tensor = K.function(inputs+[K.learning_phase()], [parent_predictions, F_parent_predict.inbound_nodes[0].input_masks[0]])

        if self.igor.from_checkpoint:
            self.load_checkpoint_weights()
        elif not self.igor.in_training:
            raise Exception("No point in running this without trained weights")

        if not self.igor.in_training:
            expanded_children = RepeatVector(repeat_N, axis=2)(leaf_spines)
            expanded_parent = RepeatVector(repeat_N, axis=1)(pspine_context)
            expanded_lex = RepeatVector(repeat_N, axis=1)(
                lexical_context
            )  # axis here is arbitary; its repeating on 1 and 2, but already repeated once
            huge_tensor = concat(
                [expanded_lex, expanded_children, expanded_parent])
            densely_aligned = LastDimDistribute(
                F_alignall.get(1).layer)(huge_tensor)
            output_predictions = Distribute(
                F_parent_predict, force_reshape=True)(densely_aligned)

            primary_inputs = [phead_in, dhead_in, pspineset_in, dspineset_in]
            leaf_inputs = [phead_in, dhead_in, dspineset_in]

            self.logger.info("+ Compiling prediction functions")
            self.inner_func = K.Function(primary_inputs + [K.learning_phase()],
                                         output_predictions)
            self.leaf_func = K.Function(leaf_inputs + [K.learning_phase()],
                                        leaf_predictions)
            try:
                self.get_ptensor = K.function(
                    primary_inputs + [K.learning_phase()], [
                        output_predictions,
                    ])
            except:
                import pdb
                pdb.set_trace()
        else:

            optimizer = Adam(self.igor.LR,
                             clipnorm=self.igor.max_grad_norm,
                             clipvalue=self.igor.grad_clip_threshold)

            theano_kwargs = theano_kwargs or {}
            self.model.compile(loss="categorical_crossentropy",
                               optimizer=optimizer,
                               metrics=['accuracy'],
                               **theano_kwargs)

        #self.model.save("here.h5")

    def likelihood_function(self, inputs):
        if self.igor.in_training:
            raise Exception("Not in testing mode; please fix the config file")
        return self.inner_func(tuple(inputs) + (0., ))

    def leaf_function(self, inputs):
        if self.igor.in_training:
            raise Exception("Not in testing mode; please fix the config file")
        return self.leaf_func(tuple(inputs) + (0., ))

    def train(self):
        replacers = {
            "daughter_predictions": "child",
            "parent_predictions": "parent",
            "leaf_predictions": "leaf"
        }
        train_data = self.igor.train_gen(forever=True)
        dev_data = self.igor.dev_gen(forever=True)
        N = self.igor.num_train_samples
        E = self.igor.num_epochs
        # generator, samplers per epoch, number epochs
        callbacks = [ProgbarV2(3, 10, replacers=replacers)]
        checkpoint_fp = join(self.igor.model_location, self.igor.saving_prefix,
                             self.igor.checkpoint_weights)
        self.logger.info("+ Model Checkpoint: {}".format(checkpoint_fp))
        callbacks += [
            ModelCheckpoint(filepath=checkpoint_fp,
                            verbose=1,
                            save_best_only=True)
        ]
        callbacks += [LearningRateScheduler(lambda epoch: self.igor.LR * 0.9)]
        csv_location = join(self.igor.log_dir, self.run_name + ".csv")
        callbacks += [CSVLogger(csv_location)]
        self.model.fit_generator(generator=train_data,
                                 samples_per_epoch=N,
                                 nb_epoch=E,
                                 callbacks=callbacks,
                                 verbose=1,
                                 validation_data=dev_data,
                                 nb_val_samples=self.igor.num_dev_samples)

    def debug(self):
        dev_data = self.igor.dev_gen(forever=False)
        X, Y = next(dev_data)
        self.model.predict_on_batch(X)
        #self.model.evaluate_generator(dev_data, self.igor.num_dev_samples)

    def profile(self, num_iterations=1):
        train_data = self.igor.train_gen(forever=True)
        dev_data = self.igor.dev_gen(forever=True)
        # generator, samplers per epoch, number epochs
        callbacks = [ProgbarV2(1, 10)]
        self.logger.debug("+ Beginning the generator")
        self.model.fit_generator(generator=train_data,
                                 samples_per_epoch=self.igor.batch_size * 10,
                                 nb_epoch=num_iterations,
                                 callbacks=callbacks,
                                 verbose=1,
                                 validation_data=dev_data,
                                 nb_val_samples=self.igor.batch_size)
        self.logger.debug(
            "+ Calling theano's pydot print.. this might take a while")
        theano.printing.pydotprint(self.model.train_function.function,
                                   outfile='theano_graph.png',
                                   var_with_name_simple=True,
                                   with_ids=True)
        self.logger.debug("+ Calling keras' print.. this might take a while")
        self.plot("keras_graph.png")
Пример #5
0
inputs = pretrained.input
outputs = pretrained.output

print(inputs)
print(outputs)

hidden = Dense(128, activation='relu')(outputs)
dropout = Dropout(.3)(hidden)
preds = Dense(2, activation='softmax')(dropout)

model = Model(inputs, preds)
model.compile(loss='categorical_crossentropy',
              optimizer=Adam(lr=1e-4),
              metrics=['acc'])

model.fit_generator(train_batches,
                    epochs=50,
                    validation_data=val_batches,
                    steps_per_epoch=1105 // 4,
                    validation_steps=255 // 4)

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
    json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("Dogs_vs_cats_model.h5")
print("Saved model to disk")

model.summary()
class Cnn_model:
    """
    Klasa umożliwiająca detekcję twarzy z użyciem konwolucyjnych sieci neuronowych. Zawiera wszystkie
    dane wejściowe, obliczeniowe i model sieci służący do obliczeń. Dodatkowo zawiera funkcje
    umożliwiające dodanie nowej osoby do bazy oraz identyfikację osób.
    """
    def __init__(self):
        # Prametry początkowe dla modelu
        self.label_id = []
        self.img_data = []
        self.index = 0
        # Ilość epok równa 50, ilość klas do określenia przy dodawaniu osób (poprzez kolejne dodane osoby)
        self.nb_class = 0
        self.epochs_num = 50
        self.fotosperclass_number = 60

    def initialize_networkmodel(self):
        """
        Funkcja inicjalizuje model sieci. Model użyty to VGGFace bez trzech ostatnich warstw, które
        zostały zamienione na warstwy o 64, 32 neuronach, z ostatnią warstwą o ilości neuronów
        równej ilości klas. Następuje inicjalizacja parametrów sieci takich jak momentum czy wskaźnik
        uczenia się. Określane są metody ewaluacji precyzji i straty.
        """

        ###### Struktura modelu ######
        vgg_model = VGGFace(include_top=False,
                            weights='vggface',
                            input_shape=(180, 180, 3))
        last_layer = vgg_model.get_layer('pool5').output
        # Add layers
        x = Flatten(name='flatten')(last_layer)
        x = Dense(64, activation='relu', name='fc6')(x)
        x = Dense(32, activation='relu', name='fc7')(x)
        out = Dense(self.nb_class, activation='softmax', name='fc8')(x)
        self.custom_vgg_model = Model(vgg_model.input, out)
        # Zamrożenie uczenia wszystkich warstw poza trzema ostatnimi, które zostały dodane
        layer_count = 0
        for layer in self.custom_vgg_model.layers:
            layer_count = layer_count + 1
        for l in range(layer_count - 3):
            self.custom_vgg_model.layers[l].trainable = False

        ###### Kompilacja modelu i parametrów uczenia (learning rate, momentum) ######
        sgd = optimizers.SGD(lr=5e-3, decay=1e-6, momentum=0.9, nesterov=True)
        self.custom_vgg_model.compile(optimizer=sgd,
                                      loss='categorical_crossentropy',
                                      metrics=['accuracy'])

    def add_person(self, **kwargs):
        """
        Funkcja umożliwia dodanie osoby do bazy do treningu sieci neuronowej. Jeśli parametr *gui*
        jest przekazany wizualizacja danych z kamery nastapi w aplikacji GUI. W innym wypadku
        wyświetlone zostanie okno z podglądem kamery.

        Args:
            **kwargs:
                gui: Obiekt głównej aplikacji GUI, dzięki któremu możliwa jest wizualizacja danych
                z kamery w aplikacji.
        """
        # Sprawdzenie czy parametr został przekazany
        gui = kwargs.get('gui', False)
        # Przekazanie parametru gui do kolejnej funkcji, gdzie jeden z elementów gui zostanie wykorzystany
        data = face_recording(gui=gui,
                              im_count=self.fotosperclass_number,
                              cnn=True)

        # Jeśli dodawana jest pierwsza twarz
        if not self.label_id:
            curr_id = 0
        # Jeśli twarz nie jest pierwsza
        else:
            curr_id = max(self.label_id) + 1
        self.label_id.extend([curr_id] * len(data))
        self.img_data.extend(data)
        self.nb_class += 1

    def data_processing(self):
        """
        Funkcja generuje batche zdjęć i dzieli je na zestawy do uczenia i do walidacji. Zestaw danych
        do uczenia jest powiększony przez generowane dodatkowo zdjęcia o różnych przekształceniach
        (rotacja, przesunięcia, odwrócenie zdjęcia).
        """

        # Hot encoding - wymagana forma etykiet dla uczenia sieci
        self.hot_label_id = to_categorical(self.label_id)
        # Rozbicie danych na treningowe i do walidacji
        X_train, X_test, y_train, y_test = train_test_split(np.array(
            self.img_data),
                                                            self.hot_label_id,
                                                            test_size=0.2)
        train_datagen = ImageDataGenerator(rotation_range=20,
                                           width_shift_range=0.2,
                                           height_shift_range=0.2,
                                           horizontal_flip=True,
                                           fill_mode='nearest')
        validation_datagen = ImageDataGenerator()

        # Ustawienie parametru batchsize równego długości danych treningowych podzielonych przez 10 % długości
        self.train_batchsize = int(round(len(X_train)) / 10)

        self.train_generator = train_datagen.flow(
            X_train, y_train, shuffle=True, batch_size=self.train_batchsize)

        self.validation_generator = validation_datagen.flow(
            X_test, y_test, batch_size=self.train_batchsize)

    def train_cnn(self):
        """
        Funkcja odpowiada za trening konwolucyjnej sieci neuronowej. Do modelu przekazywane są
        zestawy zdjęć do uczenia i walidacji, a także następuje przekierowanie informacji nt. statusu
        uczenia sieci do oddzielnego strumienia. Umożliwia on wyświetlanie takiej informacji w
        aplikacji GUI. Dodatkowo dodany został Callback EarlyStopping, który w razie zmiany celności
        nie większej niż 1% - po 5 epokach bez zmiany skończy proces uczenia.
        """

        # Stworzenie listy Callbacków - jeden odpowiada za wyświetlanie danych w GUI - drugi za zatrzymanie uczenia
        # w przypadku gdy przez 5 epok accuracy nie urośnie o więcej niż 1%.
        self.stream_output = OutputStream()
        early_stopping = EarlyStopping(monitor='acc',
                                       min_delta=0.01,
                                       patience=5,
                                       verbose=0,
                                       mode='max')
        callback_list = [early_stopping, self.stream_output]

        # Historia rejestrująca zmiany w procesie uczenia
        self.history = self.custom_vgg_model.fit_generator(
            self.train_generator,
            steps_per_epoch=self.train_generator.n /
            self.train_generator.batch_size,
            epochs=self.epochs_num,
            validation_data=self.validation_generator,
            validation_steps=self.validation_generator.n /
            self.validation_generator.batch_size,
            verbose=1,
            callbacks=callback_list)

        # # Zapisz model do pliku
        # self.custom_vgg_model.save('trained_model_{}'.format(
        #     datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')))

    def recognize_face(self, gui=False):
        """
        Identyfikacja osoby z użyciem wcześniej wytrenowanej sieci neuronowej. Jeśli parametr *gui*
        jest dodany nastąpi wyświetlenie obrazu z kamery w aplikacji GUI, jeśli nie - pojawi się
        dodatkowe okno.

        Args:
            gui: Obiekt głównej aplikacji GUI, dzięki któremu możliwa jest wizualizacja danych
                z kamery w aplikacji.

        Returns:
            image: poszukiwana twarz (zdjęcie).
            model.predict: wartości prawdopodobieństwa przynależności do danej klasy.
        """
        try:
            assert self.custom_vgg_model
        except:
            raise AttributeError()

        image = take_image(gui=gui, cnn=True)
        return image, self.custom_vgg_model.predict(
            np.expand_dims(image, axis=0))[0]

    def accuracy_statistics(self):
        """
        Wyświetlenie danych dotyczących precyzji i straty w trakcie uczenia sieci neuronowej. Dane
        są podzielone na precyzję i stratę dla zestawu uczącego i zestawu walidacyjnego.
        """

        ##### Pokaż wyniki uczenia #####
        acc = self.history.history['acc']
        val_acc = self.history.history['val_acc']
        loss = self.history.history['loss']
        val_loss = self.history.history['val_loss']
        epochs = range(len(acc))

        # Precyzja uczelnia
        plt.subplot(121)
        plt.plot(epochs, acc)
        plt.plot(epochs, val_acc)
        plt.title('model accuracy')
        plt.ylabel('accuracy')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        # "Strata" uczenia
        plt.subplot(122)
        plt.plot(epochs, loss)
        plt.plot(epochs, val_loss)
        plt.title('model loss')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()
Пример #7
0
          'batch_size': 1,
          'n_classes': 3,
          'n_channels': 4,
          'shuffle': True}

# Generators
print(len(train_val_test_dict['train']))
training_generator = SingleDataGenerator(train_val_test_dict['train'], **params)
validation_generator = SingleDataGenerator(train_val_test_dict['val'], **params)

cb_1=keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, mode='auto')
cb_2=keras.callbacks.ModelCheckpoint(filepath="1Bpred_weights.{epoch:02d}-{val_loss:.2f}.hdf5", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1)


results = model.fit_generator(generator=training_generator,
                        validation_data=validation_generator,
                    epochs=100,
                    callbacks=[cb_1,cb_2])
model.save_weights("model_1_weights.h5")

history_1_pred = results.history
pickle.dump( history_1_pred, open( "history_1_pred.pkl", "wb" ) )

params = {'dim': (160,32,160),
          'batch_size': 1,
          'n_classes': 3,
          'n_channels': 4,
          'shuffle': False}


validation_generator = SingleDataGenerator(train_val_test_dict['test'], **params)
Пример #8
0
class SiameseNetwork:
	def __init__(self, shape, modelName, learningRate=1.0):
		self.learningRate = learningRate
		self.modelName = modelName
		left_input = Input(shape)
		right_input = Input(shape)
		# Define Siamese Network using shared weights
		L1_layer = Lambda(lambda tensors:K.abs(tensors[0] - tensors[1]))
		L1_distance = L1_layer([left_input, right_input])
		hidden = Dense(512, activation='relu')(L1_distance)
		hidden2 = Dense(64, activation='relu')(hidden)
		prediction = Dense(1, activation='sigmoid')(hidden2)
		self.siamese_net = Model(inputs=[left_input, right_input], outputs=prediction)
		# Compile and prepare network
		self.siamese_net.compile(loss="binary_crossentropy", optimizer=Adadelta(self.learningRate), metrics=['accuracy'])

	def trainModel(self, trainDatagen, valGen, epochs, batch_size, verbose=1):
		early_stop = EarlyStopping(monitor='val_loss', min_delta=0.1, patience=5, verbose=verbose)
		reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.01, verbose=verbose)
		self.siamese_net.fit_generator(trainDatagen
			,steps_per_epoch=320000 / batch_size, epochs=epochs
			#,validation_data=valGen, validation_steps = 80000 / batch_size
			,callbacks=[early_stop, reduce_lr])

	def finetune(self, X, Y, epochs, batch_size, verbose=1):
		early_stop = EarlyStopping(monitor='val_loss', min_delta=0.1, patience=5, verbose=1)
		reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.01, verbose=verbose)
		self.siamese_net.fit(self.preprocess(X), Y, batch_size=batch_size, epochs=epochs, validation_split=0.2, verbose=verbose, callbacks=[early_stop, reduce_lr])

	def testAccuracy(self, X, Y, batch_size=512):
		n_correct, total = 0, 0
		X_left, X_right, Y_send = [], [], []
		for i, x in enumerate(X):
			for j, y in enumerate(X):
				X_left.append(x)
				X_right.append(y)
				Y_send.append(1*(Y[i] == Y[j]))
				if len(X_left) == batch_size:
					Y_send = np.stack(Y_send)
					predictions = np.argmax(self.siamese_net.predict([np.stack(X_left), np.stack(X_right)]), axis=1)
					n_correct += np.sum(predictions == Y_send)
					total += len(X_left)
					X_left, X_right, Y_send = [], [], []
		if len(X_left) > 0:
			Y_send = np.stack(Y_send)
			predictions = np.argmax(self.siamese_net.predict([np.stack(X_left), np.stack(X_right)]), axis=1)
			n_correct += np.sum(predictions == Y_send)
			total += len(X_left)
		return n_correct / float(total)

	def customTrainModel(self, dataGen, epochs, batch_size, valRatio=0.2, n_steps=320000):
		steps_per_epoch = int(n_steps / batch_size)
		for _ in range(epochs):
			train_loss, val_loss = 0, 0
			train_acc, val_acc = 0, 0
			for i in range(steps_per_epoch):
				x, y = next(dataGen)
				# Split into train and val
				indices = np.random.permutation(len(y))
				splitPoint = int(len(y) * valRatio)
				x_train, y_train = [ pp[indices[splitPoint:]] for pp in x], y[indices[splitPoint:]]
				x_test, y_test = [ pp[indices[:splitPoint]] for pp in x], y[indices[:splitPoint]]
				train_metrics = self.siamese_net.train_on_batch(x_train, y_train)
				train_loss += train_metrics[0]
				train_acc += train_metrics[1]
				val_metrics = self.siamese_net.test_on_batch(x_test, y_test)
				val_loss += val_metrics[0]
				val_acc += val_metrics[1]
				sys.stdout.write("%d / %d : Tr loss: %f, Tr acc: %f, Vl loss: %f, Vl acc: %f  \r" % (i+1, steps_per_epoch, train_loss/(i+1), train_acc/(i+1), val_loss/(i+1), val_acc/(i+1)))
				sys.stdout.flush()
			print("\n")

	def maybeLoadFromMemory(self):
		try:
			self.siamese_net.load_weights(self.modelName + ".h5")
			return True
		except:
			return False

	def save(self, customName=None):
		if not customName:
			self.siamese_net.save_weights(self.modelName + ".h5")
		else:
			self.siamese_net.save_weights(customName + ".h5")

	def preprocess(self, X):
		return X

	def predict(self, X):
		return self.siamese_net.predict(self.preprocess(X), batch_size=1024)
def train():
    """Construct model and train it"""

    inputs = Input(shape=data.INPUT_SHAPE)

    # load pre-trained model
    base_model = ResNet50(input_shape=data.INPUT_SHAPE,
                          weights='imagenet',
                          include_top=False)

    # freeze pre-trained weights
    for layer in base_model.layers:
        layer.trainable = False

    x = base_model(inputs)
    # flatten multi-dimensional structure into one dimension
    x = Flatten()(x)

    class_output = Dense(2, activation='softmax')(x)
    # no idea what activation would be good here
    box_coordinates = Dense(4, activation='relu')(x)

    model = Model(inputs=inputs, outputs=[class_output, box_coordinates])
    # compile the model
    # (this should be done after setting layers to non-trainable)
    model.compile(optimizer='rmsprop',
                  loss=['binary_crossentropy', 'mean_squared_error'],
                  loss_weights=[1 / 0.6, 1 / 10000])

    # callbacks

    # saves network architecture and weights after each epoch
    cp_dir = CHECKPOINT_ROOT_DIR + os.sep + time.strftime("%Y-%m-%d_%H-%M-%S")
    os.makedirs(cp_dir)
    filepath = cp_dir + os.sep + \
               "model_epoch{epoch:02d}_val_loss{val_loss:.2f}.hdf5"
    model_checkpoint = callbacks.ModelCheckpoint(filepath,
                                                 monitor='val_loss',
                                                 verbose=0,
                                                 save_best_only=False,
                                                 save_weights_only=False,
                                                 mode='auto',
                                                 period=1)
    # writes information about training process to the specified folder in
    # TesorBoard format. TensorBoard can then visualize these logs in a
    # browser
    batch_size = 10
    tensor_board = callbacks.TensorBoard(log_dir=TENSORBOARD_LOG_PATH,
                                         histogram_freq=0,
                                         batch_size=batch_size,
                                         write_graph=True,
                                         write_grads=False,
                                         write_images=False,
                                         embeddings_freq=0,
                                         embeddings_layer_names=None,
                                         embeddings_metadata=None)
    # `steps_per_epoch` is the number of batches to draw from the generator
    # at each epoch.
    model.fit_generator(generator=train_generator(data.train_data, batch_size,
                                                  data.INPUT_SHAPE),
                        validation_data=validation_generator(
                            data.validation_data, batch_size,
                            data.INPUT_SHAPE),
                        validation_steps=3,
                        steps_per_epoch=500,
                        epochs=10,
                        workers=1,
                        callbacks=[model_checkpoint, tensor_board])

    return model
Пример #10
0
)
train_batches = train_generator.flow_from_directory('flowers/train', target_size=(224, 224), batch_size=4)

val_generator = ImageDataGenerator(preprocessing_function=preprocess_input)
val_batches = val_generator.flow_from_directory('flowers/val', target_size=(224, 224), batch_size=4)

indices = train_batches.class_indices
labels = [None] * 17
for key in indices:
    labels[indices[key]] = key

pretrained = VGG19(include_top=False, input_shape=(224, 224, 3), weights='imagenet', pooling='max')

for layer in pretrained.layers:
    layer.trainable = False

inputs = pretrained.input
outputs = pretrained.output

print(inputs)
print(outputs)

hidden = Dense(128, activation='relu')(outputs)
dropout = Dropout(.3)(hidden)
preds = Dense(17, activation='softmax')(dropout)

model = Model(inputs, preds)
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-4), metrics=['acc'])

model.fit_generator(train_batches, epochs=100, validation_data=val_batches)
Пример #11
0
        self.best_acc = []
        self.dataset = dataset

    def on_epoch_end(self, epoch, logs={}):
        score, acc = self.model.evaluate_generator(get_batch(self.dataset),
                                                   steps=self.dataset.epoch)
        self.best_acc.append(acc)
        print(("best test -los:{}  -acc:{}".format(score, acc)))

    def on_train_end(self, logs={}):
        print(("test acc list: " + str(self.best_acc)))
        print(("BestTest  acc:{}".format(max(self.best_acc))))


print(model.summary())
# plot_model(model, to_file='../figure/hierarchicalCNN_No_Shape.png', show_shapes=False)
# plot_model(sent_model, to_file='../figure/sentModel_No_Shape.png', show_shapes=False)
checkpointer = ModelCheckpoint(filepath="../save/weights.hdf5",
                               verbose=1,
                               monitor='val_acc',
                               save_best_only=True,
                               save_weights_only=False)
testCallback = TestHistory(dataset=testset)

model.fit_generator(get_batch(dataset=trainset),
                    steps_per_epoch=trainset.epoch,
                    epochs=15,
                    validation_data=get_batch(dataset=devset),
                    validation_steps=devset.epoch,
                    callbacks=[testCallback])
Пример #12
0
    def fit(self, sp, X_tr, X_tr_aux, y_tr, X_val, X_val_aux, y_val):
        keras.backend.clear_session()

        print(X_tr.shape)

        input_img = Input(shape=(X_tr.shape[1:]))
        # We don't use it in this CNN.
        input_aux = Input(shape=[X_tr_aux.shape[1]])

        x = Conv2D(32, kernel_size=(3, 3))(input_img)
        x = LeakyReLU()(x)
        x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(x)
        x = Dropout(0.1)(x)

        x = Conv2D(64, kernel_size=(3, 3))(x)
        x = LeakyReLU()(x)
        x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)
        x = Dropout(0.4)(x)

        x = Flatten()(x)
        x = Dense(128)(x)
        x = LeakyReLU()(x)
        x = Dropout(sp['dropout1'])(x)

        x = Dense(10, activation='softmax')(x)

        model = Model([input_img, input_aux], x)
        model.compile(loss=keras.losses.categorical_crossentropy,
                      optimizer=Adam(lr=sp['lr']),
                      metrics=['accuracy'])

        batch_size = sp['batch_size']

        generator = ImageDataGenerator(
            horizontal_flip=True,
            vertical_flip=True,
            rotation_range=20,
            zoom_range=0.2,
            shear_range=0.2,
        )
        iter_ = generator.flow(
            X_tr,
            range(len(X_tr)),
            batch_size=batch_size,
            seed=123,
        )

        def datagen():
            while True:
                X_batch, idx = iter_.next()
                yield [X_batch, X_tr_aux[idx]], y_tr[idx]

        best_weights = '.best_weights.h5'
        model.fit_generator(generator=datagen(),
                            steps_per_epoch=int(X_tr.shape[0] / batch_size),
                            epochs=100,
                            verbose=2,
                            validation_data=([X_val, X_val_aux], y_val),
                            callbacks=[
                                EarlyStopping(monitor='val_loss',
                                              patience=10,
                                              verbose=1),
                                ModelCheckpoint(best_weights,
                                                save_best_only=True,
                                                monitor='val_loss'),
                            ])
        model.load_weights(filepath=best_weights)

        return model
Пример #13
0
                model_dict = get_model_dict_from_db(model_str, opts)
                input = model_dict['in']
                output = model_dict['out']
                for i in np.arange(opt_utils.get_epoch(opts) / reset_step):
                    model = Model(model_dict['in'], model_dict['out'])
                    # for layer in model.layers:
                    # 	k = np.random.binomial(1,.5)
                    # 	layer.trainable = bool(k)
                    model.summary()
                    model.compile(loss=opt_utils.get_loss(opts),
                                  optimizer=optimizer,
                                  metrics=opt_utils.get_metrics(opts))
                    # TRAIN
                    samples_per_epoch = data_train.shape[0] if opts[
                        'training_opts']['samples_per_epoch'] == -1 else opts[
                            'training_opts']['samples_per_epoch']
                    model.fit_generator(data_gen.flow(
                        data_train,
                        label_train,
                        batch_size=opts['training_opts']['batch_size'],
                        shuffle=True,
                        seed=opts['seed']),
                                        samples_per_epoch=samples_per_epoch,
                                        nb_epoch=reset_step,
                                        callbacks=callback_list,
                                        validation_data=(data_test,
                                                         label_test))
            except:
                print(model_str, dataset_str)
                traceback.print_exc()
Пример #14
0
indices = train_batches.class_indices
labels = [None] * 17
for key in indices:
    labels[indices[key]] = key

pretrained = VGG19(include_top=False,
                   input_shape=(224, 224, 3),
                   weights='imagenet',
                   pooling='max')

for layer in pretrained.layers:
    layer.trainable = False

inputs = pretrained.input
outputs = pretrained.output

hidden = Dense(128, activation='relu')(outputs)
dropout = Dropout(.3)(hidden)
preds = Dense(17, activation='softmax')(dropout)

model = Model(inputs, preds)
model.compile(loss='categorical_crossentropy',
              optimizer=Adam(lr=1e-4),
              metrics=['acc'])

model.fit_generator(train_batches,
                    epochs=100,
                    validation_data=val_batches,
                    steps_per_epoch=len(train_batches),
                    validation_steps=len(val_batches))
# custom_vgg_model = vgg_model

# fine-tuning by GAP
print(custom_vgg_model.summary())

train_datagen = ImageDataGenerator(rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,
                                   validation_split=0)
train_generator = train_datagen.flow_from_directory(
    '../../data/train',
    target_size=(200, 200),
    batch_size=32,
    class_mode='categorical',
    subset="training")
validation_generator = train_datagen.flow_from_directory(
    '../../data/train',
    target_size=(200, 200),
    batch_size=32,
    class_mode='categorical',
    subset="validation")

custom_vgg_model.compile(optimizer=keras.optimizers.Adam(lr=1e-7), loss=classification_loss_stage2,
                         metrics=["accuracy", square_loss_tec, cross_loss_tec])
# custom_vgg_model.compile(optimizer=keras.optimizers.Adam(lr=1e-7), loss=keras.losses.categorical_crossentropy, metrics=["accuracy", square_loss_tec, cross_loss_tec])
model_save_callback = keras.callbacks.ModelCheckpoint("./saved_models/model%s.h5" % time.strftime('%Y-%m-%d-%H-%M-%S'),
                                                      monitor="val_loss", verbose=1, save_best_only=False, mode="auto")
custom_vgg_model.fit_generator(train_generator, steps_per_epoch=5000, epochs=2, validation_data=validation_generator,
                               validation_steps=200, callbacks=[model_save_callback])
# custom_vgg_model.fit(x_train, y_train, batch_size=32, epochs=300, verbose=1, validation_data=(x_test, y_test), shuffle=True, callbacks=[model_save_callback])

# keras.models.save_model(custom_vgg_model, "./saved_models/final_model_" + time.strftime('%Y-%m-%d-%H-%M-%S') + ".h5")
Пример #16
0
                             monitor='val_acc',
                             verbose=1,
                             save_best_only=True,
                             mode='max')

print(" --nb_train_samples: " + str(nb_train_samples) + "\n" +
      " --nb_validation_samples: " + str(nb_validation_samples) + "\n" +
      " --nb_epoch: " + str(nb_epoch) + "\n" + " --nb_classes: " +
      str(nb_classes) + "\n" + " --learning rate: " + str(learningrate) +
      "\n" + " --momentum: " + str(momentum) + "\n" + " --batchtrainsize: " +
      str(batch_trainsize) + "\n" + " --batchvalidationsize: " +
      str(batch_testsize) + "\n" + " --optimizer: SGD\n" +
      " --metrics: accuracy\n" + " --model: VGG16 (until block3_pool layer)\n")

# fine-tune the model
model.fit_generator(train_generator,
                    steps_per_epoch=nb_train_samples,
                    epochs=nb_epoch,
                    validation_data=validation_generator,
                    validation_steps=nb_validation_samples,
                    callbacks=[tb, checkpoint])

# serialize model to JSON
model_json = model.to_json()
with open("./outputs/model.json", "w") as json_file:
    json_file.write(model_json)

# save the model !!!Be careful, if you want to load it again, delete "_v2" tag in name
model.save('./trained_models\cifar10-vgg16_model_alllayers_v2.h5')

del model  #prevent memory leak
Пример #17
0
pred = Dense(10, activation='sigmoid')(x)

model = Model(base_model.input, pred)

for layer in base_model.layers:
    layer.trainable = False

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.SGD(lr=1e-5, momentum=0.9),
              metrics=['accuracy'])

model.summary()
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

train_datagen.fit(X_train)
train_generator = train_datagen.flow(X_train, Y_train, batch_size=32)

test_datagen = ImageDataGenerator(rescale=1. / 255)
validation_generator = test_datagen.flow(X_test, Y_test, batch_size=32)

model.fit_generator(
    train_generator,
    samples_per_epoch=nb_train_samples,
    nb_epoch=nb_epoch,
    validation_data=validation_generator,
    nb_val_samples=nb_validation_samples)
Пример #18
0
    top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
    top_model.add(Dense(256, activation='relu'))
    top_model.add(Dropout(.5))
    top_model.add(Dense(1, activation='sigmoid'))

    model = Model(input=base_model.input, output=top_model(base_model.output))

    for layer in model.layers[:19]:
        layer.trainable = False

    model.compile(loss='binary_crossentropy',
                  optimizer=Adam(),
                  metrics=['accuracy'])

    tensorboard = TensorBoard(log_dir=os.path.join(SAVE_PATH, 'logs'),
                              histogram_freq=1,
                              write_graph=True,
                              write_images=False)

    model.fit_generator(train_generator,
                        steps_per_epoch=nb_train_samples // batch_size,
                        epochs=2000,
                        validation_data=validation_generator,
                        validation_steps=nb_validation_samples // batch_size,
                        callbacks=[
                            ModelCheckpoint(filepath=os.path.join(
                                SAVE_PATH,
                                'checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5'),
                                            save_best_only=True), tensorboard
                        ])
Пример #19
0
            x = BatchNormalization()(x)
            x = Dropout(DROPOUT)(x)
            out = Dense(NUM_CLASSES, activation="softmax")(x)
            model = Model(inputs=densenet_model.input, outputs=out)

    #################################################################################################################################################################################################################
    # COMPILE, FINE-TUNE/TRAIN AND EVALUATE THE MODEL
    #################################################################################################################################################################################################################
    model.compile(loss=CLASS_MODE + "_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])
    K.set_value(model.optimizer.lr, LEARNING_RATE)
    model.fit_generator(train_it,
                        shuffle=True,
                        epochs=NUM_EPOCHS,
                        steps_per_epoch=int(TOT_TRAINING_IMAGES / BATCH_SIZE),
                        validation_data=val_it,
                        validation_steps=int(TOT_VALIDATION_IMAGES /
                                             BATCH_SIZE))

    scores = model.evaluate_generator(test_it, steps=24)

    print("Accuracy: %.2f%%" % (scores[1] * 100))

    ################################################################################################################################################################
    # SAVE THE CURRENT SESSION AND THE FINAL MODEL
    ################################################################################################################################################################
    saver = tf.train.Saver()
    sess = K.get_session()
    saver.save(sess, SAVE_DIR + timestamp + "/session.ckpt")
model.compile(optimizer=opt, loss=custom_mse, metrics=[root_mean_squared_error, mean_squared_error])

model.summary()

start_from = 0
save_every_n_epoch = 1
n_epochs = 10000
# model.load_weights("../weights/implementation9-bn-24.h5")

# start image downloader
ip = None

g = h5_small_vgg_generator(b_size, "../data/h5_small_train", ip)
gval = h5_small_vgg_generator(b_size, "../data/h5_small_validation", None)


for i in range(start_from // save_every_n_epoch, n_epochs // save_every_n_epoch):
    print("START", i * save_every_n_epoch, "/", n_epochs)
    history = model.fit_generator(g, steps_per_epoch=100000//b_size, epochs=save_every_n_epoch,
                                  validation_data=gval, validation_steps=(10000//b_size))
    model.save_weights("../weights/implementation9-bn-" + str(i * save_every_n_epoch) + ".h5")

    # save sample images
    whole_image_check_overlapping(model, 80, "imp9-bn-" + str(i * save_every_n_epoch) + "-")

    # save history
    output = open('../history/imp9-bn-{:0=4d}.pkl'.format(i * save_every_n_epoch), 'wb')
    pickle.dump(history.history, output)
    output.close()

Пример #21
0
    def fit(self, sp, X_tr, X_tr_aux, y_tr, X_val, X_val_aux, y_val):
        keras.backend.clear_session()
        print(sp)

        ## Init model
        input_bands = Input(shape=X_tr.shape[1:])
        base_model = ResNet50(input_shape=input_bands.shape[1:],
                              input_tensor=input_bands,
                              include_top=False,
                              classes=1,
                              pooling='avg')
        x = base_model.output
        x = Dropout(sp['dropout1'])(x)
        if sp['batchnorm'] == 1:
            x = BatchNormalization()(x)

        x = Dense(sp['n_filter'], activation='relu')(x)
        x = LeakyReLU()(x)
        x = Dropout(sp['dropout2'])(x)
        x = Dense(1,
                  activation='sigmoid',
                  kernel_initializer='he_normal',
                  name='pred')(x)

        model = Model(input_bands, x)
        model.compile(loss='binary_crossentropy',
                      optimizer=Adam(lr=sp['lr']),
                      metrics=['accuracy'])

        batch_size = sp['batch_size']

        now = datetime.datetime.now()

        ## Train
        ### Warm up (train only classify layer )
        for layer in base_model.layers:
            layer.trainable = False

        model.compile(loss='binary_crossentropy',
                      optimizer=Adam(lr=sp['lr']),
                      metrics=['accuracy'])

        generator = ImageDataGenerator(horizontal_flip=True,
                                       vertical_flip=True,
                                       rotation_range=25,
                                       fill_mode='wrap')
        iter_ = generator.flow(X_tr,
                               range(len(X_tr)),
                               batch_size=batch_size,
                               seed=123)

        def datagen():
            while True:
                X_batch, idx = iter_.next()
                yield X_batch, y_tr[idx]

        best_weights = 'weights/weights.hdf5'
        model.fit_generator(
            generator=datagen(),
            steps_per_epoch=int(len(X_tr) / batch_size),
            epochs=10,
            validation_data=(X_val, y_val),
            callbacks=[
                EarlyStopping(monitor='val_loss', patience=25, verbose=1),
                ModelCheckpoint(best_weights,
                                save_best_only=True,
                                monitor='val_loss'),
                keras.callbacks.TensorBoard(
                    log_dir="logs/chipping_{:%Y%m%dT%H%M}".format(now),
                    histogram_freq=0,
                    write_graph=True,
                    write_images=False),
            ])

        ### Train all model
        for layer in base_model.layers:
            layer.trainable = True

        model.compile(loss='binary_crossentropy',
                      optimizer=Adam(lr=sp['lr']),
                      metrics=['accuracy'])

        model.fit_generator(generator=datagen(),
                            steps_per_epoch=int(len(X_tr) / batch_size),
                            epochs=150,
                            validation_data=(X_val, y_val),
                            callbacks=[
                                EarlyStopping(monitor='val_loss',
                                              patience=25,
                                              verbose=1),
                                ModelCheckpoint(best_weights,
                                                save_best_only=True,
                                                monitor='val_loss'),
                            ])

        model.load_weights(filepath=best_weights)

        return model
Пример #22
0
def main():

    # The data, shuffled and split between train and test sets:
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')

    # Convert class vectors to binary class matrices.
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    inputs = Input(shape=(32, 32, 3))

    out1, out2 = simple_cnn(inputs)

    model = Model(inputs=inputs, outputs=[out1, out2])
    # model.summary()

    opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
    model.compile(optimizer=opt,
                  loss=['categorical_crossentropy', 'categorical_crossentropy'],
                  metrics=['accuracy'])


    if not data_augmentation:
        print('Not using data augmentation.')
        model.fit(x_train, [y_train, y_train],
                  batch_size=batch_size,
                  epochs=epochs,
                  validation_data=(x_test, [y_test, y_test]),
                  shuffle=True)
    else:
        print('Using real-time data augmentation.')
        n_process = 4
        pool = multiprocessing.Pool(processes=n_process)
        def train_generator(x, y, batch_size):
            train_datagen = T.ImageDataGenerator(
                            pool=pool, 
                            width_shift_range=0.1,   # randomly shift images horizontally (fraction of total width)
                            height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
                            horizontal_flip=True)    # randomly flip images
            generator = train_datagen.flow(x, y, batch_size=batch_size)
            while 1:
                x_batch, y_batch = generator.next()
                yield (x_batch, [y_batch, y_batch])

        # Fit the model on the batches generated by datagen.flow().
        model.fit_generator(generator=train_generator(x_train, y_train, batch_size),
                            steps_per_epoch=int(y_train.shape[0] / batch_size),
                            epochs=epochs,
                            validation_data=(x_test, [y_test, y_test]),
                            callbacks=[])
        
        pool.terminate()

    # Save model and weights
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    model_path = os.path.join(save_dir, model_name)
    model.save(model_path)
    print('Saved trained model at %s ' % model_path)

    # Score trained model.
    scores = model.evaluate(x_test, [y_test, y_test], verbose=1)
    print('Test loss:', scores[0])
    print('Test accuracy:', scores[1])
Пример #23
0
train_datagen.fit(X_train)
train_generator = train_datagen.flow(X_train, Y_train, batch_size=BATCH_SIZE)
#%%
val_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=False)

val_datagen.fit(X_val)
val_generator = val_datagen.flow(X_val, Y_val, batch_size=BATCH_SIZE)
#%% md
## Train the Model
#%%
train_steps_per_epoch = X_train.shape[0] // BATCH_SIZE
val_steps_per_epoch = X_val.shape[0] // BATCH_SIZE

history = model.fit_generator(train_generator,
                              steps_per_epoch=train_steps_per_epoch,
                              validation_data=val_generator,
                              validation_steps=val_steps_per_epoch,
                              epochs=EPOCHS,
                              verbose=1)
#%% md
## Analyze Model Performance
#%%
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
t = f.suptitle('Deep Neural Net Performance', fontsize=12)
f.subplots_adjust(top=0.85, wspace=0.3)

epochs = list(range(1, EPOCHS + 1))
ax1.plot(epochs, history.history['acc'], label='Train Accuracy')
ax1.plot(epochs, history.history['val_acc'], label='Validation Accuracy')
ax1.set_xticks(epochs)
ax1.set_ylabel('Accuracy Value')
ax1.set_xlabel('Epoch')
model.compile(optimizer=opt, loss=custom_mse)

model.summary()

start_from = 160
save_every_n_epoch = 10
n_epochs = 300

model.load_weights("../weights/implementation7l-150.h5")

g = image_processing.image_generator_parts(list_dir,
                                           b_size,
                                           im_size=(224, 224))

for i in range(start_from // save_every_n_epoch,
               n_epochs // save_every_n_epoch):
    print("START", i * save_every_n_epoch, "/", n_epochs)
    history = model.fit_generator(g,
                                  steps_per_epoch=len(list_dir) // b_size,
                                  epochs=save_every_n_epoch)
    model.save_weights("../weights/implementation7l-" +
                       str(i * save_every_n_epoch) + ".h5")

    # save sample images
    whole_image_check(model, 20, "imp7l-" + str(i) + "-")

    # save history
    output = open('../history/imp7l-{:0=4d}.pkl'.format(i), 'wb')
    pickle.dump(history.history, output)
    output.close()
Пример #25
0
class NonConvexEstimator(BaseEstimator):
    def __init__(self,
                 alpha=1.,
                 n_components=25,
                 step_size=1e-3,
                 latent_dropout_rate=0.,
                 input_dropout_rate=0.,
                 coef_init=None,
                 optimizer='adam',
                 intercept_init=None,
                 batch_size=256,
                 latent_sparsity=None,
                 use_generator=False,
                 random_state=None,
                 n_jobs=1,
                 max_iter=1000):
        self.alpha = alpha
        self.n_components = n_components
        self.max_iter = max_iter
        self.step_size = step_size
        self.latent_dropout_rate = latent_dropout_rate
        self.input_dropout_rate = input_dropout_rate
        self.coef_init = coef_init
        self.intercept_init = intercept_init
        self.batch_size = batch_size
        self.optimizer = optimizer
        self.latent_sparsity = latent_sparsity
        self.random_state = random_state
        self.n_jobs = n_jobs
        self.use_generator = use_generator

    def fit(self, Xs, ys, dataset_weights=None):
        self.random_state = check_random_state(self.random_state)
        n_datasets = len(Xs)
        n_samples = sum(X.shape[0] for X in Xs)
        n_features = Xs[0].shape[1]

        # Data
        sizes = np.array([y.shape[1] for y in ys])
        limits = [0] + np.cumsum(sizes).tolist()
        n_targets = limits[-1]

        if self.n_components == 'auto':
            n_components = n_targets
        else:
            n_components = self.n_components

        self.slices_ = []
        for iter in range(n_datasets):
            self.slices_.append(np.array([limits[iter], limits[iter + 1]]))
        self.slices_ = tuple(self.slices_)

        if dataset_weights is None:
            dataset_weights = [1.] * n_datasets
        dataset_weights /= np.sum(dataset_weights) / n_datasets
        # dataset_weights = np.array(dataset_weights) * np.sqrt([X.shape[0] for X in Xs])

        padded_ys = []
        masks = []
        Xs = [X.copy() for X in Xs]
        for y, this_slice in zip(ys, self.slices_):
            padded_y = np.zeros((y.shape[0], n_targets))
            mask = np.zeros((y.shape[0], n_targets), dtype='bool')
            mask[:, this_slice[0]:this_slice[1]] = 1
            padded_y[:, this_slice[0]:this_slice[1]] = y
            padded_ys.append(padded_y)
            masks.append(mask)
        if self.use_generator:
            our_generator = generator(Xs,
                                      padded_ys,
                                      masks,
                                      batch_size=self.batch_size,
                                      dataset_weights=dataset_weights,
                                      random_state=self.random_state)
            if self.batch_size is not None:
                steps_per_epoch = n_samples / self.batch_size
            else:
                steps_per_epoch = n_datasets
        else:
            Xs_cat = np.concatenate(Xs, axis=0)
            padded_ys_cat = np.concatenate(padded_ys, axis=0)
            masks_cat = np.concatenate(masks, axis=0)
            sample_weight = np.concatenate(
                [[dataset_weight * n_samples / X.shape[0] / n_datasets] *
                 X.shape[0] for dataset_weight, X in zip(dataset_weights, Xs)])
            if self.batch_size is None:
                batch_size = n_samples
            else:
                batch_size = self.batch_size
        # Model
        if self.intercept_init is not None:
            supervised_bias_initializer = \
                lambda shape: K.constant(self.intercept_init)
        else:
            supervised_bias_initializer = 'zeros'
        if self.coef_init is not None:
            U, S, VT = svd(self.coef_init, full_matrices=False)
            latent_init = U[:, :n_components]
            latent_init *= S[:n_components]
            supervised_init = VT[:n_components]
            if n_components > latent_init.shape[1]:
                latent_init = np.concatenate([
                    latent_init,
                    np.zeros((latent_init.shape[0],
                              n_components - latent_init.shape[1]))
                ],
                                             axis=1)
                supervised_init = np.concatenate([
                    supervised_init,
                    np.zeros((n_components - supervised_init.shape[0],
                              supervised_init.shape[1]))
                ],
                                                 axis=0)
            supervised_kernel_initializer = \
                lambda shape: K.constant(supervised_init)
            latent_kernel_initializer = \
                lambda shape: K.constant(latent_init)
        else:
            supervised_kernel_initializer = 'glorot_uniform'
            latent_kernel_initializer = 'glorot_uniform'
        data = Input(shape=(n_features, ), name='data', dtype='float32')
        mask = Input(shape=(n_targets, ), name='mask', dtype='bool')
        dropout_data = Dropout(rate=self.input_dropout_rate)(data)
        if n_components is not None:
            latent = Dense(n_components,
                           name='latent',
                           use_bias=False,
                           kernel_initializer=latent_kernel_initializer,
                           kernel_regularizer=l2(self.alpha))(dropout_data)
            latent = Dropout(rate=self.latent_dropout_rate)(latent)
        else:
            latent = dropout_data
        logits = Dense(n_targets,
                       use_bias=True,
                       name='supervised',
                       kernel_initializer=supervised_kernel_initializer,
                       bias_initializer=supervised_bias_initializer,
                       kernel_regularizer=l2(self.alpha))(latent)
        prediction = PartialSoftmax()([logits, mask])
        self.model_ = Model(inputs=[data, mask], outputs=prediction)
        if self.optimizer == 'adam':
            optimizer = Adam
        elif self.optimizer == 'sgd':
            optimizer = SGD
        elif self.optimizer == 'rmsprop':
            optimizer = RMSprop
        else:
            raise ValueError('Wrong optimizer')
        self.model_.compile(optimizer(self.step_size),
                            loss='categorical_crossentropy',
                            metrics=['accuracy'])
        schedule = lambda i: 1e-3 if i < self.max_iter // 2 else 1e-4
        scheduler = LearningRateScheduler(schedule)
        callbacks = [scheduler]

        if self.latent_sparsity is not None:
            callbacks.append(L1ProjCallback(radius=self.latent_sparsity))

        sess = tf.Session(
            config=tf.ConfigProto(device_count={'CPU': self.n_jobs},
                                  inter_op_parallelism_threads=self.n_jobs,
                                  intra_op_parallelism_threads=self.n_jobs,
                                  use_per_session_threads=True))
        K.set_session(sess)

        if self.use_generator:
            self.model_.fit_generator(our_generator,
                                      steps_per_epoch=steps_per_epoch,
                                      verbose=2,
                                      epochs=self.max_iter,
                                      callbacks=callbacks)
        else:
            self.model_.fit([Xs_cat, masks_cat],
                            padded_ys_cat,
                            sample_weight=sample_weight,
                            batch_size=batch_size,
                            verbose=2,
                            epochs=self.max_iter,
                            callbacks=callbacks)
        supervised, self.intercept_ = self.model_.get_layer(
            'supervised').get_weights()
        if self.n_components is not None:
            latent = self.model_.get_layer('latent').get_weights()[0]
            self.coef_ = latent.dot(supervised)
        else:
            self.coef_ = supervised

    def predict(self, Xs):
        n_datasets = len(Xs)
        X_cat = np.concatenate(Xs, axis=0)
        n_targets = self.model_.output_shape[1]
        sample_sizes = np.array([X.shape[0] for X in Xs])
        limits = [0] + np.cumsum(sample_sizes).tolist()
        sample_slices = []
        for i in range(n_datasets):
            sample_slices.append(np.array([limits[i], limits[i + 1]]))
        sample_slices = tuple(sample_slices)
        masks = []
        for X, this_slice in zip(Xs, self.slices_):
            mask = np.zeros((X.shape[0], n_targets), dtype='bool')
            mask[:, this_slice[0]:this_slice[1]] = 1
            masks.append(mask)
        mask_cat = np.concatenate(masks, axis=0)
        y_cat = self.model_.predict([X_cat, mask_cat])
        ys = []
        for X, sample_slice, target_slice in zip(Xs, sample_slices,
                                                 self.slices_):
            y = y_cat[sample_slice[0]:sample_slice[1],
                      target_slice[0]:target_slice[1]]
            ys.append(y)
        ys = tuple(ys)
        return ys
Пример #26
0
if not data_augmentation:
    print('Not using data augmentation.')
    history = model.fit(x_train, y_train,
                        batch_size=batch_size, nb_epoch=nb_epoch, verbose=1,
                        validation_data=(x_test, y_test), shuffle=True,
                        callbacks=[])
else:
    print('Using real-time data augmentation.')

    # realtime data augmentation
    datagen_train = ImageDataGenerator(
        featurewise_center=False,
        samplewise_center=False,
        featurewise_std_normalization=False,
        samplewise_std_normalization=False,
        zca_whitening=False,
        rotation_range=0,
        width_shift_range=0.125,
        height_shift_range=0.125,
        horizontal_flip=True,
        vertical_flip=False)
    datagen_train.fit(x_train)

    # fit the model on the batches generated by datagen.flow()
    history = model.fit_generator(datagen_train.flow(x_train, y_train, batch_size=batch_size, shuffle=True),
                                  samples_per_epoch=x_train.shape[0],
                                  nb_epoch=nb_epoch, verbose=1,
                                  validation_data=(x_test, y_test),
                                  callbacks=[])

model = Model(inputs=input_tensor, outputs=predictions)

for layer in model.layers:
    layer.W_regularizer = l2(1e-2)
    layer.trainable = True

model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(
    lr=config.lr), metrics=['accuracy'])

# print(model.summary())

# ----- TRAINING -----
model.fit_generator(train_generator,
                    steps_per_epoch=config.TRAIN_NUM // 12,
                    validation_data=validate_generator,
                    validation_steps=config.VAL_NUM // 12,
                    callbacks=callbacks,
                    epochs=config.EPOCHS,
                    verbose=1)

# ------ TESTING ------
label_map = validate_generator.class_indices
print(label_map)

# No augmentation on test dataset
test_datagen = ImageDataGenerator(rescale=1. / 255)
generator = test_datagen.flow_from_directory(
    config.TEST_DATA,
    target_size=(config.IMAGE_SIZE, config.IMAGE_SIZE),
    batch_size=12,
    class_mode=None,  # No labels for test dataset
Пример #28
0
               EMBEDDING_DIMENSION,
               input_length=TARGET_LENGTH,
               weights=emb_weights)(target_string)
ts = Conv1D(1000, 3, activation='relu')(ts)
ts = GlobalMaxPooling1D()(ts)
ts = Dropout(0.5)(ts)

inp = concatenate([cwp, cws, esp, ess, l2v, ts])
inp = Dense(units=len(ENCODING_MAP_2x2), activation=u'softmax')(inp)
model = Model(inputs=[
    context_words_pair, context_words_single, entities_strings_pair,
    entities_strings_single, mapvec, target_string
],
              outputs=[inp])
model.compile(loss=u'categorical_crossentropy',
              optimizer=u'rmsprop',
              metrics=[u'accuracy'])

print(u'Finished building model...')
#  --------------------------------------------------------------------------------------------------------------------
checkpoint = ModelCheckpoint(
    filepath=u"../data/weights.{epoch:02d}-{acc:.2f}.hdf5", verbose=0)
early_stop = EarlyStopping(monitor=u'acc', patience=5)
file_name = u"../data/train_wiki_uniform.txt"
model.fit_generator(
    generate_arrays_from_file(file_name, word_to_index),
    steps_per_epoch=int(check_output(["wc", file_name]).split()[0]) /
    BATCH_SIZE,
    epochs=250,
    callbacks=[checkpoint, early_stop])
Пример #29
0
	
	#--FC Layer
	hidden1 = Dense(512,activation='relu',name='hidden1')(last_layer)
	hidden1 = Dropout(0.5)(hidden1)
	
	#--FC Layer
	hidden2 = Dense(512,activation='relu',name='hidden2')(hidden1)
	hidden2 = Dropout(0.5)(hidden2)

	#--Regression Layer
	out = Dense(1,activation='linear',name='classifier')(hidden2)

	custom_vgg_model = Model(rgb_model.input,out)

	custom_vgg_model.compile(loss='mse',optimizer=keras.optimizers.Adam(lr=0.0001,decay=0.0005))
	custom_vgg_model.fit_generator(generator(),samples_per_epoch=1000,validation_data=val_generator(),validation_steps=10,epochs=2)

	#--Here you read the label
	Y=readCSV(dirLabelsTest+'_Depression.csv')
	buf=0
	numberOfFrames = NUM_FRAMES #
	while (buf < numberOfFrames):
		#Insert here the directory of the images of test set
		imagem = image.load_img(dirTesting,target_size=(FRAME_HEIGHT,FRAME_WIDTH))
		imagem = image.img_to_array(imagem)
		#Subtract the mean of VGGFace2 dataset
		#---put your function here
		imga = utils.preprocess_input(imagem,version=2) #here it is the mean value of VGGFace dataset
		X.append(imga)
	X = np.array(X)
	X = np.expand_dims(X,axis=0)