Пример #1
0
def build_model(input_shape):

	xin = Input(input_shape)
	
	#shift the below down by one
	x1 = conv_block(xin,8,activation='relu')
	x1_ident = AveragePooling3D()(xin)
	x1_merged = merge([x1, x1_ident],mode='concat', concat_axis=1)
	
	x2_1 = conv_block(x1_merged,24,activation='relu') #outputs 37 ch
	x2_ident = AveragePooling3D()(x1_ident)
	x2_merged = merge([x2_1,x2_ident],mode='concat', concat_axis=1)
	
	#by branching we reduce the #params
	x3_ident = AveragePooling3D()(x2_ident)
	x3_malig = conv_block(x2_merged,48,activation='relu') #outputs 25 + 16 ch = 41
	x3_malig_merged = merge([x3_malig,x3_ident],mode='concat', concat_axis=1)
	
	x4_ident = AveragePooling3D()(x3_ident)
	x4_malig = conv_block(x3_malig_merged,64,activation='relu') #outputs 25 + 16 ch = 41
	x4_merged = merge([x4_malig,x4_ident],mode='concat', concat_axis=1)
	
	
	x5_malig = conv_block(x4_merged,64) #outputs 25 + 16 ch = 41
	xpool_malig = BatchNormalization(momentum=0.995)(GlobalMaxPooling3D()(x5_malig))
	xout_malig = Dense(1, name='o_mal', activation='relu')(xpool_malig) #relu output

	x5_diam = conv_block(x4_merged,64) #outputs 25 + 16 ch = 41
	xpool_diam = BatchNormalization(momentum=0.995)(GlobalMaxPooling3D()(x5_diam))
	xout_diam = Dense(1, name='o_diam', activation='relu')(xpool_diam) #relu output

	x5_lob = conv_block(x4_merged,64) #outputs 25 + 16 ch = 41
	xpool_lob = BatchNormalization(momentum=0.995)(GlobalMaxPooling3D()(x5_lob))
	xout_lob = Dense(1, name='o_lob', activation='relu')(xpool_lob) #relu output

	x5_spic = conv_block(x4_merged,64) #outputs 25 + 16 ch = 41
	xpool_spic = BatchNormalization(momentum=0.995)(GlobalMaxPooling3D()(x5_spic))
	xout_spic = Dense(1, name='o_spic', activation='relu')(xpool_spic) #relu output

	
	model = Model(input=xin,output=[xout_diam, xout_lob, xout_spic, xout_malig])
	
	if input_shape[1] == 32:
		lr_start = .01
	elif input_shape[1] == 64:
		lr_start = .003
	elif input_shape[1] == 128:
		lr_start = .002
	# elif input_shape[1] == 96:
		# lr_start = 5e-4
	
	opt = Nadam(lr_start,clipvalue=1.0)
	print 'compiling model'

	model.compile(optimizer=opt,loss='mse',loss_weights={'o_diam':0.06, 'o_lob':0.5, 'o_spic':0.5, 'o_mal':1.0})
	return model
Пример #2
0
def up_conv_block_seunet(x, x2, f, dropout=False):

    x = UpSampling3D(size=(2, 2, 2))(x)

    channels_nb = K.int_shape(x2)[-1]

    if channels_nb==16:
        channels_nb_bottleneck = channels_nb // 16
    else:
        channels_nb_bottleneck = channels_nb // 32

    x3=GlobalMaxPooling3D()(x2)
    x3 = Dense(channels_nb_bottleneck, activation='relu')(x3)
    x3 = Dense(channels_nb, activation='sigmoid')(x3)

    y = Lambda(lambda x: attetion(x))([x2, x3])

    x = Concatenate(axis=-1)([x, y])

    f_new = f + channels_nb

    x = Conv3D(f_new, (3, 3, 3), padding="same")(x)
    x = Conv3D(f_new, (3, 3, 3), padding="same")(x)

    x = BatchNormalization(axis=-1)(x)
    if dropout:
        x = Dropout(0.5)(x)

    x = Activation("relu")(x)

    return x
Пример #3
0
def build_model(input_shape):

    xin = Input(input_shape)

    #shift the below down by one
    x1 = conv_block(xin, 8, activation='relu')
    x1_ident = AveragePooling3D()(xin)
    x1_merged = merge([x1, x1_ident], mode='concat', concat_axis=1)

    x2_1 = conv_block(x1_merged, 24, activation='relu')  #outputs 37 ch
    x2_ident = AveragePooling3D()(x1_ident)
    x2_merged = merge([x2_1, x2_ident], mode='concat', concat_axis=1)

    #by branching we reduce the #params
    x3_ident = AveragePooling3D()(x2_ident)
    x3_malig = conv_block(x2_merged, 36,
                          activation='relu')  #outputs 25 + 16 ch = 41

    x3_malig_merged = merge([x3_malig, x3_ident], mode='concat', concat_axis=1)

    x4_ident = AveragePooling3D()(x3_ident)
    x4_malig = conv_block(x3_malig_merged, 48,
                          activation='relu')  #outputs 25 + 16 ch = 41

    x4_malig_merged = merge([x4_malig, x4_ident], mode='concat', concat_axis=1)

    x5_malig = conv_block(x4_malig_merged, 64)  #outputs 25 + 16 ch = 41

    xpool_malig = BatchNormalization(momentum=0.995)(
        GlobalMaxPooling3D()(x5_malig))
    xout_malig = Dense(1, name='o_mal',
                       activation='sigmoid')(xpool_malig)  #sigmoid output

    model = Model(input=xin, output=xout_malig)

    if input_shape[1] == 32:
        lr_start = .01
    elif input_shape[1] == 64:
        lr_start = .003
    elif input_shape[1] == 128:
        lr_start = .002
    # elif input_shape[1] == 96:
    # lr_start = 5e-4

    opt = Nadam(lr_start, clipvalue=1.0)
    print 'compiling model'

    model.compile(optimizer=opt, loss='mae')
    return model
Пример #4
0
def build_model(input_shape):

    xin = Input(input_shape)

    x1 = conv_block(xin,8,activation='crelu')
    x1_ident = AveragePooling3D()(xin)
    x1_merged = concatenate([x1, x1_ident], axis=1)
    
    x2_1 = conv_block(x1_merged,24,activation='crelu',init='orthogonal') 
    x2_ident = AveragePooling3D()(x1_ident)
    x2_merged = concatenate([x2_1,x2_ident], axis=1)
    
    #by branching we reduce the #params
    x3_1 = conv_block(x2_merged,36,activation='crelu',init='orthogonal') 
    x3_ident = AveragePooling3D()(x2_ident)
    x3_merged = concatenate([x3_1,x3_ident], axis=1)

    x4_1 = conv_block(x3_merged,36,activation='crelu',init='orthogonal') 
    x4_ident = AveragePooling3D()(x3_ident)
    x4_merged = concatenate([x4_1,x4_ident], axis=1)
    
    x5_1 = conv_block(x4_merged,64,pool=False,init='orthogonal') 
    
    xpool = BatchNormalization()(GlobalMaxPooling3D()(x5_1))
    
    xout = dense_branch(xpool,outsize=1,activation='sigmoid')
    
    
    model = Model(input=xin,output=xout)
    
    if input_shape[1] == 32 :
        lr_start = 1e-5
    elif input_shape[1] == 64:
        lr_start = 1e-5
    elif input_shape[1] == 128:
        lr_start = 1e-4
    elif input_shape[1] == 96:
        lr_start = 5e-4
    elif input_shape[1] == 16:
        lr_start = 1e-6
        
    opt = Nadam(lr_start,clipvalue=1.0)
    print('compiling model')

    model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
    return model
Пример #5
0
def build_model(input_shape):

    xin = Input(input_shape)

    #shift the below down by one
    x1 = conv_block(xin, 8, norm=True, drop_rate=0)  #outputs 9 ch
    x1_ident = AveragePooling3D()(xin)
    x1_merged = merge([x1, x1_ident], mode='concat', concat_axis=1)

    x2_1 = conv_block(x1_merged, 24, norm=True,
                      drop_rate=0)  #outputs 16+9 ch  = 25
    x2_ident = AveragePooling3D()(x1_ident)
    x2_merged = merge([x2_1, x2_ident], mode='concat', concat_axis=1)

    #by branching we reduce the #params
    x3_1 = conv_block(x2_merged, 64, norm=True,
                      drop_rate=0)  #outputs 25 + 16 ch = 41
    x3_ident = AveragePooling3D()(x2_ident)
    x3_merged = merge([x3_1, x3_ident], mode='concat', concat_axis=1)

    x4_1 = conv_block(x3_merged, 72, norm=True,
                      drop_rate=0)  #outputs 25 + 16 ch = 41
    x4_ident = AveragePooling3D()(x3_ident)
    x4_merged = merge([x4_1, x4_ident], mode='concat', concat_axis=1)

    x5_1 = conv_block(x4_merged, 72, norm=True, pool=False,
                      drop_rate=0)  #outputs 25 + 16 ch = 41

    xpool = GlobalMaxPooling3D()(x5_1)
    xpool_norm = BatchNormalization()(xpool)
    #xpool_norm = GaussianDropout(.1)(xpool_norm)

    #from here let's branch and predict different things
    xout_diam = dense_branch(xpool_norm,
                             name='o_d',
                             outsize=1,
                             activation='relu')

    #sphericity
    # xout_spher= dense_branch(xpool_norm,name='o_spher',outsize=4,activation='softmax')

    # xout_text = dense_branch(xpool_norm,name='o_t',outsize=4,activation='softmax')

    #calcification
    # xout_calc = dense_branch(xpool_norm,name='o_c',outsize=7,activation='softmax')
    xout_cad_falsepositive = dense_branch(xpool_norm,
                                          name='o_fp',
                                          outsize=3,
                                          activation='softmax')

    # xout_cat = merge([xout_text,xout_spher,xout_calc],name='o_cat',mode='concat', concat_axis=1)

    xout_margin = dense_branch(xpool_norm,
                               name='o_marg',
                               outsize=1,
                               activation='sigmoid')
    xout_lob = dense_branch(xpool_norm,
                            name='o_lob',
                            outsize=1,
                            activation='sigmoid')
    xout_spic = dense_branch(xpool_norm,
                             name='o_spic',
                             outsize=1,
                             activation='sigmoid')
    xout_malig = dense_branch(xpool_norm,
                              name='o_mal',
                              outsize=1,
                              activation='sigmoid')

    # xout_numeric = merge([xout_margin, xout_lob, xout_spic, xout_malig],name='o_num',mode='concat',concat_axis=1)

    model = Model(input=xin,
                  output=[
                      xout_diam, xout_lob, xout_spic, xout_malig,
                      xout_cad_falsepositive
                  ])

    if input_shape[1] == 32:
        lr_start = .005
    elif input_shape[1] == 64:
        lr_start = .001
    elif input_shape[1] == 128:
        lr_start = 1e-4
    elif input_shape[1] == 96:
        lr_start = 5e-4

    opt = Nadam(lr_start, clipvalue=1.0)
    print 'compiling model'

    model.compile(optimizer=opt,
                  loss={
                      'o_d': 'mse',
                      'o_lob': 'binary_crossentropy',
                      'o_spic': 'binary_crossentropy',
                      'o_mal': 'binary_crossentropy',
                      'o_fp': 'categorical_crossentropy'
                  },
                  loss_weights={
                      'o_d': 1.0,
                      'o_lob': 5.0,
                      'o_spic': 5.0,
                      'o_mal': 5.0,
                      'o_fp': 5.0
                  })
    return model
def build_model(input_shape):

    xin = Input(input_shape)

    #shift the below down by one
    x1 = conv_block(xin, 8, activation='crelu')  #outputs 13 ch
    x1_ident = AveragePooling3D()(xin)
    x1_merged = merge([x1, x1_ident], mode='concat', concat_axis=1)

    x2_1 = conv_block(x1_merged,
                      24,
                      activation='crelu',
                      init=looks_linear_init)  #outputs 37 ch
    x2_ident = AveragePooling3D()(x1_ident)
    x2_merged = merge([x2_1, x2_ident], mode='concat', concat_axis=1)

    #by branching we reduce the #params
    x3_ident = AveragePooling3D()(x2_ident)

    x3_diam = conv_block(x2_merged,
                         36,
                         activation='crelu',
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x3_lob = conv_block(x2_merged,
                        36,
                        activation='crelu',
                        init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x3_spic = conv_block(x2_merged,
                         36,
                         activation='crelu',
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x3_malig = conv_block(x2_merged,
                          36,
                          activation='crelu',
                          init=looks_linear_init)  #outputs 25 + 16 ch = 41

    x3_diam_merged = merge([x3_diam, x3_ident], mode='concat', concat_axis=1)
    x3_lob_merged = merge([x3_lob, x3_ident], mode='concat', concat_axis=1)
    x3_spic_merged = merge([x3_spic, x3_ident], mode='concat', concat_axis=1)
    x3_malig_merged = merge([x3_malig, x3_ident], mode='concat', concat_axis=1)

    x4_ident = AveragePooling3D()(x3_ident)
    x4_diam = conv_block(x3_diam_merged,
                         36,
                         activation='crelu',
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x4_lob = conv_block(x3_lob_merged,
                        36,
                        activation='crelu',
                        init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x4_spic = conv_block(x3_spic_merged,
                         36,
                         activation='crelu',
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x4_malig = conv_block(x3_malig_merged,
                          36,
                          activation='crelu',
                          init=looks_linear_init)  #outputs 25 + 16 ch = 41

    x4_diam_merged = merge([x4_diam, x4_ident], mode='concat', concat_axis=1)
    x4_lob_merged = merge([x4_lob, x4_ident], mode='concat', concat_axis=1)
    x4_spic_merged = merge([x4_spic, x4_ident], mode='concat', concat_axis=1)
    x4_malig_merged = merge([x4_malig, x4_ident], mode='concat', concat_axis=1)

    x5_diam = conv_block(x4_diam_merged,
                         64,
                         pool=False,
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x5_lob = conv_block(x4_lob_merged, 64, pool=False,
                        init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x5_spic = conv_block(x4_spic_merged,
                         64,
                         pool=False,
                         init=looks_linear_init)  #outputs 25 + 16 ch = 41
    x5_malig = conv_block(x4_malig_merged,
                          64,
                          pool=False,
                          init=looks_linear_init)  #outputs 25 + 16 ch = 41

    xpool_diam = BatchNormalization()(GlobalMaxPooling3D()(x5_diam))
    xpool_lob = BatchNormalization()(GlobalMaxPooling3D()(x5_lob))
    xpool_spic = BatchNormalization()(GlobalMaxPooling3D()(x5_spic))
    xpool_malig = BatchNormalization()(GlobalMaxPooling3D()(x5_malig))

    #from here let's branch and predict different things
    xout_diam = dense_branch(xpool_diam,
                             name='o_d',
                             outsize=1,
                             activation='relu')
    xout_lob = dense_branch(xpool_lob,
                            name='o_lob',
                            outsize=1,
                            activation='sigmoid')
    xout_spic = dense_branch(xpool_spic,
                             name='o_spic',
                             outsize=1,
                             activation='sigmoid')
    xout_malig = dense_branch(xpool_malig,
                              name='o_mal',
                              outsize=1,
                              activation='sigmoid')

    #sphericity
    # xout_spher= dense_branch(xpool_norm,name='o_spher',outsize=4,activation='softmax')

    # xout_text = dense_branch(xpool_norm,name='o_t',outsize=4,activation='softmax')

    #calcification
    # xout_calc = dense_branch(xpool_norm,name='o_c',outsize=7,activation='softmax')

    model = Model(input=xin,
                  output=[xout_diam, xout_lob, xout_spic, xout_malig])

    if input_shape[1] == 32:
        lr_start = .003
    elif input_shape[1] == 64:
        lr_start = .001
    elif input_shape[1] == 128:
        lr_start = 1e-4
    elif input_shape[1] == 96:
        lr_start = 5e-4

    opt = Nadam(lr_start, clipvalue=1.0)
    print 'compiling model'

    model.compile(optimizer=opt,
                  loss={
                      'o_d': 'mse',
                      'o_lob': 'binary_crossentropy',
                      'o_spic': 'binary_crossentropy',
                      'o_mal': 'binary_crossentropy'
                  },
                  loss_weights={
                      'o_d': 1.0,
                      'o_lob': 5.0,
                      'o_spic': 5.0,
                      'o_mal': 5.0
                  })
    return model