def evaluate(self, gold_labels, pred_labels, target_names):
     overall_accuracy = accuracy_score(gold_labels, pred_labels)
     #class_report = classification_report(gold_labels, pred_labels, target_names=target_names)
     precision = metrics.precision_score(gold_labels, pred_labels)
     recall = metrics.recall_score(gold_labels, pred_labels)
     f1_score = metrics.f1_score(gold_labels, pred_labels)
     return overall_accuracy, precision, recall, f1_score
Пример #2
0
def SVM(X_train,y_train,X_test,y_test):
    '''fit a SVM model to the data
    '''
    t0 = time()
    # normalize
    min_max_scaler = MinMaxScaler()
    X_train = min_max_scaler.fit_transform(X_train)
    X_test = min_max_scaler.fit_transform(X_test)

    model = SVC(kernel = "rbf")
    model.fit(X_train, y_train)
    print ("training time:", round(time()-t0, 3), "s")

    # make predictions
    t0 = time()
    expected = y_test
    predicted = model.predict(X_test)
    print ("predicting time:", round(time()-t0, 3), "s")

    # summarize the fit of the model
    score = metrics.accuracy_score(expected, predicted)
    print(score)
    print(metrics.recall_score(expected,predicted))

    return model, score
Пример #3
0
def DTree(X_train, y_train, X_test, y_test):
    model = tree.DecisionTreeClassifier(min_samples_split=40)
    t0 = time()
    model.fit(X_train, y_train)
    print("training time:", round(time() - t0, 3), "s")
    t0 = time()
    expected = y_test
    predicted = model.predict(X_test)
    print("predicting time:", round(time() - t0, 3), "s")
    # summarize the fit of the model
    score = metrics.accuracy_score(expected, predicted)
    print(score)
    print(metrics.recall_score(expected, predicted))
    return model, score
def SVM(X_train, y_train, X_test, y_test):
    # fit a SVM model to the data
    t0 = time()
    model = SVC(kernel="linear")
    model.fit(X_train, y_train)
    print("training time:", round(time() - t0, 3), "s")
    #print(model)
    # make predictions
    t0 = time()
    expected = y_test
    predicted = model.predict(X_test)
    print("predicting time:", round(time() - t0, 3), "s")
    # summarize the fit of the model
    score = metrics.accuracy_score(expected, predicted)
    print(score)
    print(metrics.recall_score(expected, predicted))
    return model, score