Пример #1
0
def build_rlstm2(input_dim,
                 h0_dim,
                 h1_dim,
                 output_dim=1,
                 lstm_init='zero',
                 lr=.001,
                 base_name='rlstm',
                 add_input_noise=True,
                 add_target_noise=False):
    model = Sequential()
    if add_input_noise:
        model.add(GaussianNoise(.1, input_shape=(None, input_dim)))
    model.add(
        RLSTM(input_dim,
              h0_dim,
              h1_dim,
              output_dim,
              init=lstm_init,
              W_h0_regularizer=l2(0.0005),
              W_h1_regularizer=l2(0.0005),
              return_sequences=True))
    #    if add_target_noise:
    #        model.add(GaussianNoise(5.))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))

    model.base_name = base_name
    yaml_string = model.to_yaml()
    #    print(yaml_string)
    with open(model_savedir + model.base_name + '.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #2
0
def build_rlstm(input_dim, h0_dim=40, h1_dim=None, output_dim=1, 
                       rec_layer_type=ReducedLSTMA, rec_layer_init='zero', fix_b_f=False,
                       layer_type=TimeDistributedDense, lr=.001, base_name='rlstm',
                       add_input_noise=True, add_target_noise=True):
    model = Sequential()  
    if add_input_noise:
        model.add(GaussianNoise(.1, input_shape=(None, input_dim)))
    model.add(layer_type(h0_dim, input_dim=input_dim, 
                    init='uniform_small', 
                    W_regularizer=l2(0.0005),
                    activation='tanh'))
    if h1_dim is not None:
        model.add(layer_type(h1_dim, 
                    init='uniform_small', 
                    W_regularizer=l2(0.0005),
                    activation='tanh'))
        
    model.add(rec_layer_type(output_dim, init=rec_layer_init, fix_b_f=fix_b_f, return_sequences=True))
    if add_target_noise:
        model.add(GaussianNoise(5.))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))  
    
    model.base_name = base_name
    yaml_string = model.to_yaml()
#    print(yaml_string)
    with open(model_savedir + model.base_name+'.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #3
0
def build_rnn(in_dim, out_dim, h0_dim, h1_dim=None, layer_type=LSTM, return_sequences=False):
    model = Sequential()  
    model.add(layer_type(h0_dim, input_shape=(None, in_dim), return_sequences=(h1_dim is not None or return_sequences)))  
    if h1_dim is not None:
        model.add(layer_type(h1_dim, return_sequences=return_sequences))
    if return_sequences:
        model.add(TimeDistributedDense(out_dim))
    else:
        model.add(Dense(out_dim))  
    model.add(Activation("linear"))  
    model.compile(loss="mse", optimizer="rmsprop")  
    return model
Пример #4
0
def build_rlstm2(input_dim, h0_dim, h1_dim, output_dim=1, 
                       lstm_init='zero', lr=.001, base_name='rlstm',
                       add_input_noise=True, add_target_noise=False):
    model = Sequential()  
    if add_input_noise:
        model.add(GaussianNoise(.1, input_shape=(None, input_dim)))
    model.add(RLSTM(input_dim, h0_dim, h1_dim, output_dim, init=lstm_init,
                    W_h0_regularizer=l2(0.0005), W_h1_regularizer=l2(0.0005), return_sequences=True))
#    if add_target_noise:
#        model.add(GaussianNoise(5.))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))  
    
    model.base_name = base_name
    yaml_string = model.to_yaml()
#    print(yaml_string)
    with open(model_savedir + model.base_name+'.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #5
0
def build_rlstm(input_dim,
                h0_dim=40,
                h1_dim=None,
                output_dim=1,
                rec_layer_type=ReducedLSTMA,
                rec_layer_init='zero',
                fix_b_f=False,
                layer_type=TimeDistributedDense,
                lr=.001,
                base_name='rlstm',
                add_input_noise=True,
                add_target_noise=True):
    model = Sequential()
    if add_input_noise:
        model.add(GaussianNoise(.1, input_shape=(None, input_dim)))
    model.add(
        layer_type(h0_dim,
                   input_dim=input_dim,
                   init='uniform_small',
                   W_regularizer=l2(0.0005),
                   activation='tanh'))
    if h1_dim is not None:
        model.add(
            layer_type(h1_dim,
                       init='uniform_small',
                       W_regularizer=l2(0.0005),
                       activation='tanh'))

    model.add(
        rec_layer_type(output_dim,
                       init=rec_layer_init,
                       fix_b_f=fix_b_f,
                       return_sequences=True))
    if add_target_noise:
        model.add(GaussianNoise(5.))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))

    model.base_name = base_name
    yaml_string = model.to_yaml()
    #    print(yaml_string)
    with open(model_savedir + model.base_name + '.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #6
0
def build_reduced_lstm(input_dim, h0_dim=40, h1_dim=None, output_dim=1, 
                       rec_layer_type=ReducedLSTMA, rec_layer_init='uniform',
                       layer_type=TimeDistributedDense, lr=.001, base_name='rlstm'):
    model = Sequential()  
    model.add(layer_type(h0_dim, input_dim=input_dim, 
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    if h1_dim is not None:
        model.add(layer_type(h1_dim, 
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
#    model.add(LSTM(h0_dim, 
#                   input_dim=input_dim,
#                   init='uniform',
#                   inner_activation='sigmoid',
#                   return_sequences=True))
#    model.add(Dropout(0.4))
#    if h1_dim is not None:
#        model.add(LSTM(h1_dim,
#                       init='uniform',
#                       inner_activation='sigmoid',
#                       return_sequences=True))
#        model.add(Dropout(0.4))
        
    model.add(rec_layer_type(output_dim, init=rec_layer_init, return_sequences=True))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))  
    
    model.base_name = base_name
    yaml_string = model.to_yaml()
#    print(yaml_string)
    with open(model_savedir + model.base_name+'.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #7
0
def train_model(dataset, h0_dim, h1_dim, out_dim):
    X_train, y_train, X_test, y_test = dataset
    batch_size = 128
    nb_epoch = 100

    model = Sequential()
    model.add(
        RNN(h0_dim,
            input_shape=(None, X_train.shape[-1]),
            return_sequences=True))
    model.add(TimeDistributedDense(out_dim))
    model.add(Activation("linear"))
    model.compile(loss="mse", optimizer="rmsprop")
    #model.get_config(verbose=1)
    #yaml_string = model.to_yaml()
    #with open('ifshort_mlp.yaml', 'w') as f:
    #    f.write(yaml_string)

    early_stopping = EarlyStopping(monitor='val_loss', patience=10)
    checkpointer = ModelCheckpoint(filepath="/tmp/ifshort_rnn_weights.hdf5",
                                   verbose=1,
                                   save_best_only=True)
    model.fit(X_train,
              y_train,
              batch_size=batch_size,
              nb_epoch=nb_epoch,
              show_accuracy=False,
              verbose=2,
              validation_data=(X_test, y_test),
              callbacks=[early_stopping, checkpointer])
Пример #8
0
def train_model(dataset, h0_dim, h1_dim, y_dim):
    X_train, y_train, X_test, y_test = dataset
    batch_size = 512
    nb_epoch = 100
    model = Sequential()
    model.add(Dense(h0_dim, input_shape=(X_train.shape[1],), 
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(h1_dim,  
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(y_dim,  
                    init='uniform', 
                    W_regularizer=l2(0.0005)))
    
    rms = RMSprop()
    sgd = SGD(lr=0.01, decay=1e-4, momentum=0.6, nesterov=False)
    model.compile(loss='mse', optimizer=sgd)
    #model.get_config(verbose=1)
    #yaml_string = model.to_yaml()
    #with open('ifshort_mlp.yaml', 'w') as f:
    #    f.write(yaml_string)
        
    early_stopping = EarlyStopping(monitor='val_loss', patience=10)
    checkpointer = ModelCheckpoint(filepath="/tmp/ifshort_mlp_weights.hdf5", verbose=1, save_best_only=True)
    model.fit(X_train, y_train, 
              batch_size=batch_size, 
              nb_epoch=nb_epoch, 
              show_accuracy=False, 
              verbose=2, 
              validation_data=(X_test, y_test), 
              callbacks=[early_stopping, checkpointer])
Пример #9
0
def build_reduced_lstm(input_dim,
                       h0_dim=40,
                       h1_dim=None,
                       output_dim=1,
                       rec_layer_type=ReducedLSTMA,
                       rec_layer_init='uniform',
                       layer_type=TimeDistributedDense,
                       lr=.001,
                       base_name='rlstm'):
    model = Sequential()
    model.add(
        layer_type(h0_dim,
                   input_dim=input_dim,
                   init='uniform',
                   W_regularizer=l2(0.0005),
                   activation='relu'))
    if h1_dim is not None:
        model.add(
            layer_type(h1_dim,
                       init='uniform',
                       W_regularizer=l2(0.0005),
                       activation='relu'))


#    model.add(LSTM(h0_dim,
#                   input_dim=input_dim,
#                   init='uniform',
#                   inner_activation='sigmoid',
#                   return_sequences=True))
#    model.add(Dropout(0.4))
#    if h1_dim is not None:
#        model.add(LSTM(h1_dim,
#                       init='uniform',
#                       inner_activation='sigmoid',
#                       return_sequences=True))
#        model.add(Dropout(0.4))

    model.add(
        rec_layer_type(output_dim, init=rec_layer_init, return_sequences=True))
    model.compile(loss="mse", optimizer=RMSprop(lr=lr))

    model.base_name = base_name
    yaml_string = model.to_yaml()
    #    print(yaml_string)
    with open(model_savedir + model.base_name + '.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #10
0
def build_mlp(in_dim, out_dim, h0_dim, h1_dim, learning_rate=.01):
    model = Sequential()
    model.add(Dense(h0_dim, input_shape=(in_dim,), 
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(h1_dim,  
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(out_dim,  
                    init='uniform', 
                    W_regularizer=l2(0.0005)))
    
#    sgd = SGD(lr=0.01, decay=1e-4, momentum=0.6, nesterov=False)
    sgd = SGD(lr=learning_rate, decay=1e-14, momentum=0.6, nesterov=False)
    model.compile(loss='mse', optimizer=sgd)
    return model
Пример #11
0
def train_model(dataset, h0_dim, h1_dim, out_dim):
    X_train, y_train, X_test, y_test = dataset
    batch_size = 128
    nb_epoch = 100
    
    model = Sequential()  
    model.add(RNN(h0_dim, input_shape=(None, X_train.shape[-1]), return_sequences=True))  
    model.add(TimeDistributedDense(out_dim))  
    model.add(Activation("linear"))  
    model.compile(loss="mse", optimizer="rmsprop")  
    #model.get_config(verbose=1)
    #yaml_string = model.to_yaml()
    #with open('ifshort_mlp.yaml', 'w') as f:
    #    f.write(yaml_string)
        
    early_stopping = EarlyStopping(monitor='val_loss', patience=10)
    checkpointer = ModelCheckpoint(filepath="/tmp/ifshort_rnn_weights.hdf5", verbose=1, save_best_only=True)
    model.fit(X_train, y_train, 
              batch_size=batch_size, 
              nb_epoch=nb_epoch, 
              show_accuracy=False, 
              verbose=2, 
              validation_data=(X_test, y_test), 
              callbacks=[early_stopping, checkpointer])
Пример #12
0
def build_mlp(in_dim, out_dim, h0_dim, h1_dim, optimizer='rmsprop'):
    model = Sequential()
    model.add(Dense(h0_dim, input_shape=(in_dim,), 
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(h1_dim,  
                    init='uniform', 
                    W_regularizer=l2(0.0005),
                    activation='relu'))
    model.add(Dense(out_dim,
                    init='uniform',
                    W_regularizer=l2(0.0005)
                    ))
    
#    sgd = SGD(lr=0.01, decay=1e-4, momentum=0.6, nesterov=False)
#    sgd = SGD(lr=learning_rate, decay=1e-24, momentum=0.6, nesterov=False)
    model.compile(loss='mse', optimizer=optimizer)
    
#    model.get_config(verbose=1)
    yaml_string = model.to_yaml()
    with open(model_savedir + 'mlp.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #13
0
def build_mlp(in_dim, out_dim, h0_dim, h1_dim, optimizer='rmsprop'):
    model = Sequential()
    model.add(
        Dense(h0_dim,
              input_shape=(in_dim, ),
              init='uniform',
              W_regularizer=l2(0.0005),
              activation='relu'))
    model.add(
        Dense(h1_dim,
              init='uniform',
              W_regularizer=l2(0.0005),
              activation='relu'))
    model.add(Dense(out_dim, init='uniform', W_regularizer=l2(0.0005)))

    #    sgd = SGD(lr=0.01, decay=1e-4, momentum=0.6, nesterov=False)
    #    sgd = SGD(lr=learning_rate, decay=1e-24, momentum=0.6, nesterov=False)
    model.compile(loss='mse', optimizer=optimizer)

    #    model.get_config(verbose=1)
    yaml_string = model.to_yaml()
    with open(model_savedir + 'mlp.yaml', 'w') as f:
        f.write(yaml_string)
    return model
Пример #14
0
## convert class vectors to binary class matrices
#Y_train = np_utils.to_categorical(y_train, nb_classes)
#Y_test = np_utils.to_categorical(y_test, nb_classes)

from pylearn2.datasets.if_monthly import IFMonthlyLong
train = IFMonthlyLong(target_type='ASV', gain_range=[0, 10], which_set='train')
X_train = train.X
y_train = train.y
test = IFMonthlyLong(target_type='ASV', gain_range=[0, 10], which_set='test')
X_test = test.X
y_test = test.y

model = Sequential()
model.add(Dense(80, input_shape=(79,), 
                init='uniform',
#                init=lambda shape: uniform(shape, scale=0.05), 
                W_regularizer=l2(0.0005),
                activation='relu'))
#model.add(Dropout(0.2))
model.add(Dense(40,  
                init='uniform',
#                init=lambda shape: uniform(shape, scale=0.05), 
                W_regularizer=l2(0.0005),
                activation='relu'))
#model.add(Dropout(0.2))
model.add(Dense(1,  
                init='uniform',
#                init=lambda shape: uniform(shape, scale=0.005), 
                W_regularizer=l2(0.0005)))

rms = RMSprop()
Пример #15
0
#Y_train = np_utils.to_categorical(y_train, nb_classes)
#Y_test = np_utils.to_categorical(y_test, nb_classes)

from pylearn2.datasets.if_monthly import IFMonthlyLong
train = IFMonthlyLong(target_type='ASV', gain_range=[0, 10], which_set='train')
X_train = train.X
y_train = train.y
test = IFMonthlyLong(target_type='ASV', gain_range=[0, 10], which_set='test')
X_test = test.X
y_test = test.y

model = Sequential()
model.add(
    Dense(
        80,
        input_shape=(79, ),
        init='uniform',
        #                init=lambda shape: uniform(shape, scale=0.05),
        W_regularizer=l2(0.0005),
        activation='relu'))
#model.add(Dropout(0.2))
model.add(
    Dense(
        40,
        init='uniform',
        #                init=lambda shape: uniform(shape, scale=0.05),
        W_regularizer=l2(0.0005),
        activation='relu'))
#model.add(Dropout(0.2))
model.add(
    Dense(
        1,