def testSparseRepeatedIndices(self): # TODO(tanzheny, omalleyt): Fix test in eager mode. for dtype in [tf.half, tf.float32, tf.float64]: with tf.Graph().as_default(), self.cached_session(): repeated_index_update_var = tf.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = tf.Variable( [[1.0], [2.0]], dtype=dtype) grad_repeated_index = tf.IndexedSlices( tf.constant( [0.1, 0.1], shape=[2, 1], dtype=dtype), tf.constant([1, 1]), tf.constant([2, 1])) grad_aggregated = tf.IndexedSlices( tf.constant( [0.2], shape=[1, 1], dtype=dtype), tf.constant([1]), tf.constant([2, 1])) repeated_update = adam.NonFusedAdam().apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) aggregated_update = adam.NonFusedAdam().apply_gradients( [(grad_aggregated, aggregated_update_var)]) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(aggregated_update_var, self.evaluate(repeated_index_update_var)) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var, self.evaluate(repeated_index_update_var))
def testSparseWithAmsgrad(self): # dtypes.half does not work on gpu + eager. for dtype in [tf.float32, tf.float64]: with self.cached_session(): m0 = np.array([[0.0], [0.0]]) v0 = np.array([[0.0], [0.0]]) v0hat = np.array([[0.0], [0.0]]) indices_np = np.array([1]) indices = tf.constant(indices_np, dtype=tf.int32) var0_np = np.array([[1.0], [2.0]], dtype=dtype.as_numpy_dtype) repeated_index_update_var = tf.Variable(var0_np, dtype=dtype) aggregated_update_var = tf.Variable(var0_np, dtype=dtype) grads0_np = np.array([[0.2]], dtype=dtype.as_numpy_dtype) grad_repeated_index = tf.IndexedSlices( tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), tf.constant([1, 1]), tf.constant([2, 1])) grad_aggregated = tf.IndexedSlices(grads0_np, indices, tf.constant([2, 1])) opt_repeated = adam.NonFusedAdam(amsgrad=True) opt_aggregated = adam.NonFusedAdam(amsgrad=True) if not tf.executing_eagerly(): repeated_update = opt_repeated.apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) aggregated_update = opt_aggregated.apply_gradients( [(grad_aggregated, aggregated_update_var)]) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose( self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var)) for t in range(3): if not tf.executing_eagerly(): self.evaluate(repeated_update) self.evaluate(aggregated_update) else: opt_repeated.apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) opt_aggregated.apply_gradients( [(grad_aggregated, aggregated_update_var)]) var0_np, m0, v0, v0hat = adam_sparse_update_numpy_amsgrad( var0_np, indices_np, grads0_np, t, m0, v0, v0hat) # Validate updated params self.assertAllCloseAccordingToType( var0_np, self.evaluate(aggregated_update_var)) self.assertAllCloseAccordingToType( self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var))
def doTestBasic(self, use_callable_params=False): for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np, name="var0_%d" % i) var1 = tf.Variable(var1_np, name="var1_%d" % i) grads0 = tf.constant(grads0_np) grads1 = tf.constant(grads1_np) learning_rate = lambda: 0.001 beta1 = lambda: 0.9 beta2 = lambda: 0.999 epsilon = lambda: 1e-8 if not use_callable_params: learning_rate = learning_rate() beta1 = beta1() beta2 = beta2() epsilon = epsilon() opt = adam.NonFusedAdam(learning_rate=learning_rate) if not tf.executing_eagerly(): update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Run 3 steps of NonFusedAdam for t in range(3): beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType(0.999**(t + 1), self.evaluate(beta_2_power)) if not tf.executing_eagerly(): self.evaluate(update) else: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType( var0_np, self.evaluate(var0), rtol=1e-4, atol=1e-4) self.assertAllCloseAccordingToType( var1_np, self.evaluate(var1), rtol=1e-4, atol=1e-4)
def testSparseDevicePlacement(self): # TODO(tanzheny, omalleyt): Fix test in eager mode. for index_dtype in [tf.int32, tf.int64]: with tf.Graph().as_default(), self.cached_session( force_gpu=tf.test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). var = tf.Variable([[1.0], [2.0]]) indices = tf.constant([0, 1], dtype=index_dtype) g_sum = lambda: tf.reduce_sum(tf.gather(var, indices)) # pylint: disable=cell-var-from-loop optimizer = adam.NonFusedAdam(3.0) minimize_op = optimizer.minimize(g_sum, var_list=[var]) self.evaluate(tf.compat.v1.global_variables_initializer()) minimize_op.run()
def testBasicWithLearningRateInverseTimeDecay(self): # TODO(tanzheny, omalleyt): Fix test in eager mode. for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): with tf.Graph().as_default(), self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np, name="var0_%d" % i) var1 = tf.Variable(var1_np, name="var1_%d" % i) grads0 = tf.constant(grads0_np) grads1 = tf.constant(grads1_np) learning_rate = 0.001 decay = 0.5 lr_schedule = learning_rate_schedule.InverseTimeDecay( learning_rate, decay_steps=1.0, decay_rate=decay) beta_1 = 0.9 beta_2 = 0.999 epsilon = 1e-7 opt = adam.NonFusedAdam( learning_rate=lr_schedule, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Run 3 steps of NonFusedAdam for t in range(3): self.evaluate(update) lr_np = learning_rate / (1 + decay * t) var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0, lr=lr_np) var1_np, m1, v1 = adam_update_numpy( var1_np, grads1_np, t, m1, v1, lr=lr_np) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparse(self): # TODO(tanzheny, omalleyt): Fix test in eager mode. for dtype in [tf.half, tf.float32, tf.float64]: with tf.Graph().as_default(), self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np) var1 = tf.Variable(var1_np) grads0_np_indices = np.array([0, 2], dtype=np.int32) grads0 = tf.IndexedSlices( tf.constant(grads0_np[grads0_np_indices]), tf.constant(grads0_np_indices), tf.constant([3])) grads1_np_indices = np.array([0, 2], dtype=np.int32) grads1 = tf.IndexedSlices( tf.constant(grads1_np[grads1_np_indices]), tf.constant(grads1_np_indices), tf.constant([3])) opt = adam.NonFusedAdam() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 3.0, 4.0], self.evaluate(var1)) beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) # Run 3 steps of NonFusedAdam for t in range(3): self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType(0.999**(t + 1), self.evaluate(beta_2_power)) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testBasicWithAmsgrad(self): for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, v0hat, m1, v1, v1hat = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np, name="var0_%d" % i) var1 = tf.Variable(var1_np, name="var1_%d" % i) grads0 = tf.constant(grads0_np) grads1 = tf.constant(grads1_np) opt = adam.NonFusedAdam(amsgrad=True) if not tf.executing_eagerly(): update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Run 3 steps of NonFusedAdam for t in range(3): beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType(0.999**(t + 1), self.evaluate(beta_2_power)) if not tf.executing_eagerly(): self.evaluate(update) else: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0, v0hat = adam_update_numpy_amsgrad( var0_np, grads0_np, t, m0, v0, v0hat) var1_np, m1, v1, v1hat = adam_update_numpy_amsgrad( var1_np, grads1_np, t, m1, v1, v1hat) # Validate updated params self.assertAllCloseAccordingToType( var0_np, self.evaluate(var0), rtol=1e-4, atol=1e-4) self.assertAllCloseAccordingToType( var1_np, self.evaluate(var1), rtol=1e-4, atol=1e-4)
class KerasOptimizerBenchmark(tf.test.Benchmark, metaclass=ParameterizedBenchmark): """Keras optimizer benchmarks.""" # The parameter of each benchmark test is a tuple, and the first one is # the optimizer name. _benchmark_parameters = benchmark_util.generate_benchmark_params_cpu_gpu([ ("Adam", tf.keras.optimizers.Adam(), 10), ("NonFusedAdam", adam.NonFusedAdam(), 10), ]) def benchmark_optimizer(self, optimizer, num_iters): """Optimizer benchmark with Bidirectional LSTM model on IMDB data. Arguments: optimizer: The optimizer instance to be benchmarked. num_iters: The number of iterations to run for performance measurement. """ model, train_x, train_y = bidirect_imdb_lstm_config() metrics, wall_time, extras = benchmark_util.measure_performance( model, x=train_x, y=train_y, batch_size=512, optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]) name = benchmark_util.get_benchmark_name(self._get_name()) metadata = { "implementation": name[0], "model_name": "optimizers", "parameters": "lstm.512", } extras.update(metadata) self.report_benchmark(iters=num_iters, wall_time=wall_time, metrics=metrics, extras=extras)