Пример #1
0
    def testSetLearningRate(self):
        optimizer = adam_new.Adam(learning_rate=1.0)
        self.assertIsInstance(optimizer._learning_rate, tf.Variable)
        self.assertEqual(self.evaluate(optimizer.learning_rate), 1.0)
        optimizer.learning_rate = 2.0
        self.assertEqual(self.evaluate(optimizer.learning_rate), 2.0)
        # Test the legacy setter.
        optimizer.lr = 3.0
        self.assertEqual(self.evaluate(optimizer.learning_rate), 3.0)

        lr_schedule = learning_rate_schedule.ExponentialDecay(
            initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9)
        optimizer = adam_new.Adam(learning_rate=lr_schedule)
        self.assertIsInstance(optimizer._learning_rate,
                              learning_rate_schedule.ExponentialDecay)
        self.assertEqual(optimizer.learning_rate, 0.01)
        # Test the legacy property.
        self.assertEqual(optimizer.lr, 0.01)

        x = tf.Variable([1.0, 2.0], dtype=tf.float32)
        grads = tf.convert_to_tensor([1.0, 2.0])
        for _ in range(2):
            optimizer.apply_gradients(zip([grads], [x]))
        self.assertTrue(optimizer.learning_rate < 0.01
                        and optimizer.learning_rate > 0.00999)
        with self.assertRaisesRegex(TypeError,
                                    "This optimizer was created with*"):
            optimizer.learning_rate = 2.0
Пример #2
0
    def testCheckpointOptimizer(self):
        x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32)
        lr_schedule = learning_rate_schedule.ExponentialDecay(
            initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9)
        optimizer_1 = adam_new.Adam(learning_rate=lr_schedule,
                                    beta_1=0.8,
                                    beta_2=0.888)
        grads = tf.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]])

        for _ in range(1):
            optimizer_1.apply_gradients(zip([grads], [x]))

        # Then save the variable and optimizer to a checkpoint.
        checkpoint_1 = tf.train.Checkpoint(var=x, optimizer=optimizer_1)
        checkpoint_path = checkpoint_1.save(self.get_temp_dir())

        # Create a new optimizer and call restore on it (and x)
        x2 = tf.Variable([[0., 0.], [0., 0.]], dtype=x.dtype)
        optimizer_2 = adam_new.Adam(learning_rate=0.02,
                                    beta_1=0.7,
                                    beta_2=0.777)
        optimizer_2.build([x2])
        checkpoint_2 = tf.train.Checkpoint(var=x2, optimizer=optimizer_2)
        checkpoint_2.restore(checkpoint_path)

        self.assertTrue((self.evaluate(
            optimizer_1._momentums._storage[0]) == self.evaluate(
                optimizer_2._momentums._storage[0])).all())
        self.assertEqual(self.evaluate(optimizer_1._iterations),
                         self.evaluate(optimizer_2._iterations))
Пример #3
0
 def testContinuous(self, serialize):
   self.evaluate(tf.compat.v1.global_variables_initializer())
   step = 5
   decayed_lr = learning_rate_schedule.ExponentialDecay(0.05, 10, 0.96)
   decayed_lr = _maybe_serialized(decayed_lr, serialize)
   expected = .05 * 0.96**(5.0 / 10.0)
   self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
Пример #4
0
  def testVariables(self, serialize):
    # TODO(tanzheny, omalleyt): Fix test in eager mode.
    with tf.Graph().as_default():
      step = tf.Variable(1)
      assign_1 = step.assign(1)
      assign_2 = step.assign(2)
      assign_100 = step.assign(100)
      decayed_lr = learning_rate_schedule.ExponentialDecay(
          .1, 3, 0.96, staircase=True)
      decayed_lr = _maybe_serialized(decayed_lr, serialize)

      self.evaluate(tf.compat.v1.global_variables_initializer())
      # No change to learning rate
      self.evaluate(assign_1.op)
      self.assertAllClose(self.evaluate(decayed_lr(step)), .1, 1e-6)
      self.evaluate(assign_2.op)
      self.assertAllClose(self.evaluate(decayed_lr(step)), .1, 1e-6)
      # Decayed learning rate
      self.evaluate(assign_100.op)
      expected = .1 * 0.96**(100 // 3)
      self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
Пример #5
0
  def testStaircase(self, serialize):
    if tf.executing_eagerly():
      step = tf.Variable(0)
      self.evaluate(tf.compat.v1.global_variables_initializer())
      decayed_lr = learning_rate_schedule.ExponentialDecay(
          .1, 3, 0.96, staircase=True)
      decayed_lr = _maybe_serialized(decayed_lr, serialize)

      # No change to learning rate due to staircase
      expected = .1
      self.evaluate(step.assign(1))
      self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)

      expected = .1
      self.evaluate(step.assign(2))
      self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)

      # Decayed learning rate
      expected = .1 * 0.96 ** (100 // 3)
      self.evaluate(step.assign(100))
      self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
Пример #6
0
def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
    """Applies natural exponential decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay exponentially with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 5
  k = 0.5
  learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate,
  global_step,
                                             decay_steps, k)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The initial learning rate.
    global_step: A Python number. Global step to use for the decay computation.
      Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    natural_exp_rate = tf.exp(tf.negative(decay_rate))
    decayed_lr = learning_rate_schedule.ExponentialDecay(learning_rate,
                                                         decay_steps,
                                                         natural_exp_rate,
                                                         staircase=staircase,
                                                         name=name)

    if not tf.executing_eagerly():
        decayed_lr = decayed_lr(global_step)
    else:
        decayed_lr = functools.partial(decayed_lr, global_step)
    return decayed_lr
Пример #7
0
def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
    """Applies exponential decay to the learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate *
                          decay_rate ^ (global_step / decay_steps)
  ```

  If the argument `staircase` is `True`, then `global_step / decay_steps` is an
  integer division and the decayed learning rate follows a staircase function.

  Example: decay every 100000 steps with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate,
  global_step,
                                             100000, 0.96, staircase=True)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
      step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
      be positive.  See the decay computation above.
    decay_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The decay rate.
    staircase: Boolean.  If `True` decay the learning rate at discrete intervals
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    decayed_lr = learning_rate_schedule.ExponentialDecay(learning_rate,
                                                         decay_steps,
                                                         decay_rate,
                                                         staircase=staircase,
                                                         name=name)
    if not tf.executing_eagerly():
        decayed_lr = decayed_lr(global_step)
    else:
        decayed_lr = functools.partial(decayed_lr, global_step)
    return decayed_lr