Пример #1
0
def train_model(train_data_generator, val_data_generator, model, initial_epoch,
                s):
    """
    Model training.

    # Arguments
       train_data_generator: Training data generated batch by batch.
       val_data_generator: Validation data generated batch by batch.
       model: Target image channels.
       initial_epoch: Dimension of model output.
    """

    # Initialize loss weights
    model.alpha = tf.Variable(s['alpha_loss_weight'],
                              trainable=False,
                              name='alpha',
                              dtype=tf.float32)
    model.beta = tf.Variable(s['beta_loss_weight'],
                             trainable=False,
                             name='beta',
                             dtype=tf.float32)

    # Initialize number of samples for hard-mining
    model.k_mse = tf.Variable(s['batch_size'],
                              trainable=False,
                              name='k_mse',
                              dtype=tf.int32)
    model.k_entropy = tf.Variable(s['batch_size'],
                                  trainable=False,
                                  name='k_entropy',
                                  dtype=tf.int32)

    # Set optimizer to adadelta (worked better over different dataset sizes than adam)
    optimizer = optimizers.Adadelta()

    # Configure training process
    model.compile(loss=[
        utils.hard_mining_mse(model.k_mse),
        utils.hard_mining_entropy(model.k_entropy)
    ],
                  optimizer=optimizer,
                  loss_weights=[model.alpha, model.beta])

    # Save training and validation losses.
    save_model_and_loss = utils.MyCallback(filepath=os.path.join(
        FLAGS.experiment_rootdir, s['model_dir']),
                                           logpath=FLAGS.experiment_rootdir,
                                           period=s['log_rate'],
                                           batch_size=s['batch_size'])

    # Train model
    steps_per_epoch = int(
        np.ceil(train_data_generator.samples / s['batch_size']))
    validation_steps = int(
        np.ceil(val_data_generator.samples / s['batch_size']))

    model.fit_generator(train_data_generator,
                        epochs=s['epochs'],
                        steps_per_epoch=steps_per_epoch,
                        callbacks=[save_model_and_loss],
                        validation_data=val_data_generator,
                        validation_steps=validation_steps,
                        initial_epoch=initial_epoch)
Пример #2
0
                        return_sequences=False)(first_ind)

    fc = Dense(128, kernel_initializer='he_normal')(second_ind)
    ac = Activation('relu')(fc)
    output = Dropout(FLAGS.dropout)(ac)
    output = Dense(num_classes, activation='softmax')(output)
    model = Model(input=[inputs], output=output)
    # try using different optimizers and different optimizer configs

    optimizer = optimizers.SGD()
    if FLAGS.optimizer == "SGD":
        optimizer = optimizers.SGD()
    elif FLAGS.optimizer == "Adam":
        optimizer = optimizers.Adam()
    elif FLAGS.optimizer == "Adadelta":
        optimizer = optimizers.Adadelta()
    elif FLAGS.optimizer == "Adagrad":
        optimizer = optimizers.Adagrad()
    elif FLAGS.optimizer == "RMSprop":
        optimizer = optimizers.RMSprop()

    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    model.summary()

    print('Train...')
    modelCheckpoint = ModelCheckpoint(
        'weights/%s_%s_%s_%s.h5' %
        (FLAGS.dataName, FLAGS.units, FLAGS.batch_size, FLAGS.optimizer),
Пример #3
0
nb_classes = Y_train.shape[1]
print(nb_classes, 'classes')

rate = 0.1

model = Sequential()
model.add(Dense(128, input_shape=(dims, ), init='uniform', activation='relu'))
model.add(Dropout(0.5, noise_shape=None, seed=42))
model.add(Dense(128, init='uniform', activation='relu'))
model.add(Dropout(0.5, noise_shape=None, seed=42))
model.add(Dense(1, init='uniform', activation='sigmoid'))

sgd = optimizers.SGD(lr=0.01, decay=0.005, momentum=0.5, nesterov=True)
rmsprop = optimizers.RMSprop(lr=0.01, rho=0.9, epsilon=1e-08, decay=0.001)
adagrad = optimizers.Adagrad(lr=0.01, epsilon=1e-09, decay=0.0001)
adadelta = optimizers.Adadelta(lr=0.1, rho=0.95, epsilon=1e-08, decay=0.005)
adamax = optimizers.Adamax(lr=0.002,
                           beta_1=0.9,
                           beta_2=0.999,
                           epsilon=1e-08,
                           decay=0.001)
adam = optimizers.Adam(lr=0.01,
                       beta_1=0.9,
                       beta_2=0.999,
                       epsilon=1e-08,
                       decay=0.001)

model.compile(optimizer=adagrad,
              loss='binary_crossentropy',
              metrics=["accuracy"])
model.summary()
Пример #4
0
# print(autoencoder.summary())

#create optimizer
if optim == 'sgd':
    optimi = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
elif optim == 'rmsprop':
    optimi = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0)
elif optim == 'adam':
    optimi = optimizers.Adam(lr=0.001,
                             beta_1=0.9,
                             beta_2=0.999,
                             epsilon=None,
                             decay=0.0,
                             amsgrad=False)
elif optim == 'adadelta':
    optimi = optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=None, decay=0.0)
elif optim == 'adagrad':
    optimi = optimizers.Adagrad(lr=0.01, epsilon=None, decay=0.0)
else:
    optimi = optimizers.Adamax(lr=0.002,
                               beta_1=0.9,
                               beta_2=0.999,
                               epsilon=None,
                               decay=0.0)

#comipile generated model
model.compile(loss="categorical_crossentropy",
              optimizer=optimi,
              metrics=['accuracy'])

time_start = time.clock()
Пример #5
0
    # model.add(Conv2D(64,(3,3),activation='relu'))
    # 第二层:
    # model.add(Conv2D(32, (3, 3), activation='relu'))  # model.add(Dropout(0.25))
    # model.add(MaxPooling2D(pool_size=(2, 2)))
    # model.add(Dropout(0.5))
    # 2、全连接层和输出层:
    model.add(Flatten())
    # model.add(Dense(128, activation='relu'))
    # model.add(Dropout(0.5))
    model.add(Dense(20, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='softmax'))

    model.summary()
    model.compile(loss='binary_crossentropy' ,#'categorical_crossentropy',  # ,
                  optimizer=optimizers.Adadelta(lr=0.01, rho=0.95, epsilon=1e-06),  # ,'Adadelta'
                  metrics=['accuracy'])
    # 模型训练
    model.fit(x_train, y_train, batch_size=104, epochs=50)
    # 模型得分
    score = model.evaluate(x_train, y_train, verbose=0)


    # 识别结果
    y_pred = model.predict(x_train)
    # 转onehot变label
    y_predict = np.argmax(y_pred,axis=1)

    # 精确度
    y_train = np.argmax(y_train.values,axis=1)
    accuracy = accuracy_score(y_train,y_predict)
Пример #6
0
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
X_validation = scaler.transform(X_validation)
# print(X_train)
# print(X_test)
# print(X_validation)
s1 = X_train.shape[0]
s2 = X_test.shape[0]
s3 = X_validation.shape[0]
X_train = pca.fit_transform(X_train).reshape(s1, 24, 24, 1)
X_test = pca.fit_transform(X_test).reshape(s2, 24, 24, 1)
X_validation = pca.fit_transform(X_validation).reshape(s3, 24, 24, 1)

model = CNNmodel(num_emotions=7)
optimizer = opt.Adadelta(lr=0.01, decay=1e-6)
model.compile(
    loss='categorical_crossentropy',
    optimizer=optimizer,
    metrics=['accuracy'],
)

model.fit(X_train,
          y_train,
          validation_data=(X_validation, y_validation),
          epochs=50,
          verbose=2,
          batch_size=128)

scores = model.evaluate(X_test, y_test, verbose=0)
print(scores[1] * 100)
input_samples.addSample("ttbb" + naming, label="ttbb")
input_samples.addSample("tt2b" + naming, label="tt2b")
input_samples.addSample("ttb" + naming, label="ttb")
input_samples.addSample("ttcc" + naming, label="ttcc")
input_samples.addSample("ttlf" + naming, label="ttlf")

# custom net config
from keras import optimizers

net_config = {
    "layers": [100, 100, 100, 100, 100, 100, 100, 100],
    "loss_function": "categorical_crossentropy",
    "Dropout": 0.40,
    "L2_Norm": 5e-4,
    "batch_size": 1000,
    "optimizer": optimizers.Adadelta(decay=0.999),
    "activation_function": "elu",
    "output_activation": "Softmax",
    "earlystopping_percentage": 0.1,
    "batchNorm": False,
}

# path to output directory (adjust NAMING)
savepath = basedir + "/workdir/" + "ttbarReco_GenLevelTraining_v2_" + str(
    JTcategory)

# initializing DNN training class
dnn = DNN.DNN(
    save_path=savepath,
    input_samples=input_samples,
    event_category=JTcategory,
Пример #8
0
 def compile_adage(self):
     # Compile the autoencoder to prepare for training
     adadelta = optimizers.Adadelta(lr=self.learning_rate)
     self.full_model.compile(optimizer=adadelta, loss=self.loss)
Пример #9
0
    #print(data_set.X_train[(data_set.X_train['LabelMass']==0)])

    print(
        'Number of training: {}, validation: {} and total events: {}.'.format(
            num_train, num_valid, num_tot))

    #Define model with given parameters
    model = KerasModel(shape_train[1], args.numlayer, args.numn, args.dropout)

    #Possible optimizers
    sgd = optimizers.SGD(lr=args.lr,
                         decay=1e-6,
                         momentum=args.momentum,
                         nesterov=True)
    ada = optimizers.Adadelta(lr=1, rho=0.95, epsilon=None, decay=0.01)
    nadam = keras.optimizers.Nadam(lr=0.002,
                                   beta_1=0.9,
                                   beta_2=0.999,
                                   epsilon=None,
                                   schedule_decay=0.004)

    model.compile(
        loss='binary_crossentropy'  #f1_loss
        ,
        optimizer=sgd,
        metrics=['accuracy'])  #,f1])
    model.summary()
    #model.save("modelNN_initial_"+args.model+".h5")

    # Save the model architecture
Пример #10
0
def run_nn(**kwargs):
    """
    Run the neural network for the given parameters

    Adapted from the code provided in lecture
    """

    # Start the timer
    start_t = timer()

    # Number of input, hidden, and output nodes
    input_nodes = 784
    hidden_nodes = 200
    output_nodes = 10

    # Set parameters
    learning_rate = kwargs["learning_rate"]
    optimizer = kwargs["optimizer"]
    batch_size = kwargs["batch_size"]
    epochs = kwargs["epochs"]

    # Create the Keras model
    model = Sequential()
    model.add(
        Dense(
            hidden_nodes,
            activation='sigmoid',
            input_shape=(input_nodes, ),
            bias=False,
        ))
    model.add(Dense(
        output_nodes,
        activation='sigmoid',
        bias=False,
    ))
    # Print the model summary
    model.summary()

    # Set the optimizer
    if optimizer == "adam":
        opt = optimizers.Adam(learning_rate=learning_rate)
    elif optimizer == "sgd":
        opt = optimizers.SGD(learning_rate=learning_rate)
    elif optimizer == "rmsprop":
        opt = optimizers.RMSprop(learning_rate=learning_rate)
    elif optimizer == "adagrad":
        opt = optimizers.Adagrad(learning_rate=learning_rate)
    elif optimizer == "adadelta":
        opt = optimizers.Adadelta(learning_rate=learning_rate)
    elif optimizer == "adamax":
        opt = optimizers.Adamax(learning_rate=learning_rate)
    elif optimizer == "nadam":
        opt = optimizers.Nadam(learning_rate=learning_rate)
    # Default optimizer is adam
    else:
        opt = optimizers.Adam(learning_rate=learning_rate)

    # Define the error criterion, optimizer, and an optional metric to monitor during training
    model.compile(
        loss='categorical_crossentropy',
        optimizer=opt,
        metrics=['accuracy'],
    )

    # Load the mnist training data CSV
    df = pd.read_csv("mnist_csv/mnist_train.csv", header=None)

    # Columns 1-784 are the input values
    x_train = np.asfarray(df.loc[:, 1:input_nodes].values)
    x_train /= 255.0

    # Column 0 is the desired label
    labels = df.loc[:, 0].values

    # Convert labels to one-hot vectors
    y_train = np_utils.to_categorical(labels, output_nodes)

    # Train the neural network
    # Train the model
    model.fit(x_train,
              y_train,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1)

    # Save the model
    model.save('MNIST_3layer_keras.h5')
    print('model saved')

    # Test the model

    # Load the MNIST test data CSV file into a list
    test_data_file = open('mnist_csv/mnist_test.csv', 'r')
    test_data_list = test_data_file.readlines()
    test_data_file.close()

    # Scorecard for how well the network performs, initially empty
    scorecard = []

    # Go through all the data in the test data set, one by one
    for record in test_data_list:
        # Split the record by the commas
        data_sample = record.split(',')

        # Correct answer is first value
        correct_label = int(data_sample[0])

        # Scale and shift the inputs
        inputs = np.asfarray(data_sample[1:]) / 255.0

        # Make prediction
        outputs = model.predict(np.reshape(inputs, (1, len(inputs))))

        # The index of the highest value corresponds to the label
        label = np.argmax(outputs)

        # Append correct or incorrect to list
        if label == correct_label:
            # Network's answer matches correct answer, add 1 to scorecard
            scorecard.append(1)
        else:
            # Netowrk's answer doesn't match correct answer, add 0 to scorecard
            scorecard.append(0)
            pass

        pass

    # Calculate the accuracy
    scorecard_array = np.asarray(scorecard)
    accuracy = scorecard_array.sum() / scorecard_array.size
    print('accuracy = {}'.format(accuracy))

    # Stop the timer
    end_t = timer()
    execution_time = end_t - start_t
    print('elapsed time = {}'.format(execution_time))

    output = {'accuracy': accuracy, 'execution_time': execution_time}
    return output
Пример #11
0
def get_150():
    ctr=0
    image_list=[]
    gt_list=[]
    folder_n = '\\data\\noisy_set\\'
    file_path_n = path + folder_n

    folder_g = '\\data\\gt_set\\'
    file_path_g = path + folder_g

    optimizers_list = ['adadelta']
    loss_functions_list = ['mean_squared_error']
#    adagrad = optimizers.Adagrad(lr=0.01, epsilon=None, decay=0.0)
#    adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
    adadelta = optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=None, decay=0.0)


    for opt,lossfn in zip(optimizers_list,loss_functions_list):
        for filename_n,filename_g in zip(os.listdir(file_path_n),os.listdir(file_path_g)): #assuming png
            img_rows, img_cols, ch = 64, 64, 3
#            print (filename_n)
            with open(file_path_n + filename_n,'rb') as infile_n:
                buf = infile_n.read()
            
            x = np.fromstring(buf, dtype = 'uint8')
            img = cv2.imdecode(x,1)
            img = cv2.resize(img,(img_rows,img_cols))
            img = cv2.resize(img,(0,0),fx=4,fy=4)
            image_list.append(img)
            
            with open(file_path_g + filename_g,'rb') as infile_g:
                buf = infile_g.read()
            x = np.fromstring(buf, dtype = 'uint8')
            img = cv2.imdecode(x,cv2.IMREAD_UNCHANGED)
            img = cv2.resize(img,(img_rows,img_cols))
            img = cv2.resize(img,(0,0),fx=4,fy=4)
            gt_list.append(img)
            
            ctr = ctr + 1
            if ctr%150 == 0:
                print(ctr)
                images_ip = np.asarray(image_list,dtype='float32')
                train_size=int(0.8*len(images_ip))
                x_train = images_ip[:train_size]
                x_test = images_ip[train_size:]
                del(images_ip)
                x_train /= 255
                x_test /= 255
    
                images_ip_gt = np.asarray(gt_list,dtype='float32')
                y_train = images_ip_gt[:train_size]
                y_test = images_ip_gt[train_size:]
                del(images_ip_gt)
                y_train /= 255
                y_test /= 255
                image_list=[]
                gt_list=[]
    
                img_rows, img_cols, ch = 256, 256, 3
                
                if K.image_data_format() == 'channels_first':
                    x_train = x_train.reshape(x_train.shape[0], ch, img_rows, img_cols)
                    x_test = x_test.reshape(x_test.shape[0], ch, img_rows, img_cols)
                    y_train = y_train.reshape(y_train.shape[0], ch, img_rows, img_cols)
                    y_test = y_test.reshape(y_test.shape[0], ch, img_rows, img_cols)
                    input_shape = (ch, img_rows, img_cols)
                else:
                    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, ch)
                    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, ch)
                    y_train = y_train.reshape(y_train.shape[0], img_rows, img_cols, ch)
                    y_test = y_test.reshape(y_test.shape[0], img_rows, img_cols, ch)
                    input_shape = (img_rows, img_cols, ch)

#                if opt == 'adagrad':
#                    opt_spec = adagrad
#                if opt == 'adam':
#                    opt_spec = adam
                if opt == 'adadelta':
                    opt_spec = adadelta
                    
                    
                if ctr == 150:
                    print(ctr)
                    autoencoder = new_model(input_shape,opt,opt_spec,lossfn)
                    print(opt,lossfn)

                
                train_model(opt,opt_spec,lossfn,x_train,y_train,x_test,y_test)
               kw,
               padding='valid',
               kernel_initializer=initializers.RandomNormal(np.sqrt(2 / kw)),
               input_shape=(tam_fijo, embedding_vecor_length)))
    submodel.add(advanced_activations.PReLU(initializers.Constant(value=0.25)))
    submodel.add(GlobalMaxPooling1D())
    submodels.append(submodel)

model = Sequential()
model.add(Merge(submodels, mode="concat"))
model.add(Dropout(dropout))
model.add(Dense(3, activation='softmax'))

# Log to tensorboard
tensorBoardCallback = TensorBoard(log_dir='./logs22', write_graph=True)
adadelta = optimizers.Adadelta(lr=alpha)
model.compile(loss='categorical_crossentropy',
              optimizer=adadelta,
              metrics=['accuracy', 'mse'])

model.fit([X_train] * len(size_filters),
          y_train,
          epochs=n_iter,
          callbacks=[tensorBoardCallback],
          batch_size=size_batch,
          validation_data=([X_test] * len(size_filters), y_test))

# Evaluation on the test set
scores = model.evaluate([X_test] * len(size_filters), y_test, verbose=0)
print("---- TEST EVALUATION ----")
print("Accuracy: %.2f%%" % (scores[1] * 100))
Пример #13
0
def get_optimizer(opt,
                  decay=None,
                  lr=None,
                  momentum=0.0,
                  nesterov=False,
                  beta_1=0.9,
                  beta_2=0.999,
                  epsilon=1e-8,
                  rho=None):
    """
    get_optimizer is a wrapper for Keras optimizers.

    Parameters
    ----------
    beta_1 : `float`
        adam optimizer parameter in range [0, 1) for updating bias first
        moment estimate
    beta_2 : `float`
        adam optimizer parameter in range [0, 1) for updating bias second
        moment estimate
    decay : `None` or `float`
        learning rate decay
    epsilon : `float`
        parameter for numerical stability
    opt : `str`
        Keras optimizer. Options: "sgd", "adam", "nadam", "rmsprop",
        "adagrad", "adamax" and "adadelta"
    lr : `None` or `float`
        optimizer learning rate
    momentum : `float`
        accelerate the gradient descent in the direction that dampens
        oscillations
    nesterov : `bool`
        use Nesterov Momentum
    rho : `None` or `float`
        gradient history

    Returns
    -------
    optimizer : :class:`keras.optimizer`
        keras optimizer object
    """

    ###############################
    # Stochastic Gradient Descent #
    ###############################
    if opt == 'sgd':

        if lr is None:
            lr = 0.01

        if decay is None:
            decay = 0.0

        optimizer = optimizers.SGD(lr=lr,
                                   momentum=momentum,
                                   decay=decay,
                                   nesterov=nesterov)
    ########
    # Adam #
    ########
    elif opt == 'adam':

        if lr is None:
            lr = 0.001

        if decay is None:
            decay = 0.0

        optimizer = optimizers.Adam(lr=lr,
                                    beta_1=beta_1,
                                    beta_2=beta_2,
                                    epsilon=epsilon,
                                    decay=decay)
    ##########
    # Adamax #
    ##########
    elif opt == 'adamax':

        if lr is None:
            lr = 0.002

        if decay is None:
            decay = 0.0

        optimizer = optimizers.Adam(lr=lr,
                                    beta_1=beta_1,
                                    beta_2=beta_2,
                                    epsilon=epsilon,
                                    decay=decay)
    #########
    # Nadam #
    #########
    # It is recommended to leave the parameters of this
    # optimizer at their default values.
    elif opt == 'nadam':

        if lr is None:
            lr = 0.002

        if decay is None:
            decay = 0.004

        optimizer = optimizers.Adam(lr=lr,
                                    beta_1=beta_1,
                                    beta_2=beta_2,
                                    epsilon=epsilon,
                                    decay=decay)

    ###########
    # RMSprop #
    ###########
    # It is recommended to leave the parameters of this
    # optimizer at their default values (except the learning
    # rate, which can be freely tuned).
    elif opt == 'rmsprop':

        if lr is None:
            lr = 0.001

        if decay is None:
            decay = 0.0

        if rho is None:
            rho = 0.9

        optimizer = optimizers.RMSprop(lr=lr,
                                       rho=rho,
                                       epsilon=epsilon,
                                       decay=decay)
    ###########
    # Adagrad #
    ###########
    # It is recommended to leave the parameters of this
    # optimizer at their default values.
    elif opt == 'adagrad':

        if lr is None:
            lr = 0.01

        if decay is None:
            decay = 0.0

        optimizer = optimizers.Adagrad(lr=lr, decay=decay, epsilon=epsilon)

    ############
    # Adadelta #
    ############
    # It is recommended to leave the parameters of this
    # optimizer at their default values.
    elif opt == 'adadelta':

        if lr is None:
            lr = 1.0

        if decay is None:
            decay = 0.0

        if rho is None:
            rho = 0.95

        optimizer = optimizers.Adadelta(lr=lr,
                                        rho=rho,
                                        epsilon=epsilon,
                                        decay=decay)
    else:
        print('ERROR: Unknown optimizer')
        sys.exit(1)

    return optimizer
def build3CnnModel(embeddingMatrix):
    """Constructs the architecture of the model
    Input:
        embeddingMatrix : The embedding matrix to be loaded in the embedding layer.
    Output:
        model : A basic LSTM model
    """
    embeddingLayer = Embedding(embeddingMatrix.shape[0],
                               EMBEDDING_DIM,
                               weights=[embeddingMatrix],
                               input_length=MAX_SEQUENCE_LENGTH,
                               trainable=False)
    # model = Sequential()
    # model.add(embeddingLayer)
    # model.add(LSTM(LSTM_DIM, dropout=DROPOUT))
    # model.add(Dense(NUM_CLASSES, activation='sigmoid'))
    #
    # rmsprop = optimizers.rmsprop(lr=LEARNING_RATE)
    # model.compile(loss='categorical_crossentropy',
    #               optimizer=rmsprop,
    #               metrics=['acc'])
    ########################################################

    print('Training model.')

    sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
    embedded_sequences = embeddingLayer(sequence_input)

    # add first conv filter
    embedded_sequences = Reshape((MAX_SEQUENCE_LENGTH, EMBEDDING_DIM, 1))(embedded_sequences)
    x = Conv2D(100, (5, EMBEDDING_DIM), activation='relu')(embedded_sequences)
    x = MaxPooling2D((MAX_SEQUENCE_LENGTH - 5 + 1, 1))(x)

    # add second conv filter.
    y = Conv2D(100, (4, EMBEDDING_DIM), activation='relu')(embedded_sequences)
    y = MaxPooling2D((MAX_SEQUENCE_LENGTH - 4 + 1, 1))(y)

    # add third conv filter.
    z = Conv2D(100, (3, EMBEDDING_DIM), activation='relu')(embedded_sequences)
    z = MaxPooling2D((MAX_SEQUENCE_LENGTH - 3 + 1, 1))(z)

    # concate the conv layers
    alpha = concatenate([x, y, z])

    # flatted the pooled features.
    alpha = Flatten()(alpha)

    # dropout
    alpha = Dropout(0.5)(alpha)

    # predictions
    preds = Dense(NUM_CLASSES, activation='softmax')(alpha)

    # build model
    model = Model(sequence_input, preds)
    adadelta = optimizers.Adadelta()

    model.compile(loss='categorical_crossentropy',
                  optimizer=adadelta,
                  metrics=['acc'])
    return model
def lstm_dense_sunspots(args):
    """
    Main function
    """
    # %%
    # IMPORTS

    # code repository sub-package imports
    from artificial_neural_networks.code.utils.download_monthly_sunspots import \
        download_monthly_sunspots
    from artificial_neural_networks.code.utils.generic_utils import save_regress_model,  \
        series_to_supervised, affine_transformation
    from artificial_neural_networks.code.utils.vis_utils import regression_figs

    # %%

    if args.verbose > 0:
        print(args)

    # For reproducibility
    if args.reproducible:
        os.environ['PYTHONHASHSEED'] = '0'
        np.random.seed(args.seed)
        rn.seed(args.seed)
        tf.set_random_seed(args.seed)
        sess = tf.Session(graph=tf.get_default_graph())
        K.set_session(sess)
        # print(hash("keras"))

    # %%
    # Load the Monthly sunspots dataset

    sunspots_path = download_monthly_sunspots()
    sunspots = np.genfromtxt(fname=sunspots_path,
                             dtype=np.float32,
                             delimiter=",",
                             skip_header=1,
                             usecols=1)

    # %%
    # Train-Test split

    L_series = len(sunspots)

    split_ratio = 2 / 3  # between zero and one
    n_split = int(L_series * split_ratio)

    look_back = args.look_back
    steps_ahead = args.steps_ahead

    train = sunspots[:n_split + (steps_ahead - 1)]
    test = sunspots[n_split - look_back:]

    train_x, train_y = series_to_supervised(train, look_back, steps_ahead)
    test_x, test_y = series_to_supervised(test, look_back, steps_ahead)

    train_y_series = train[look_back:train.shape[0] - (steps_ahead - 1)]
    test_y_series = test[look_back:]

    # %%
    # PREPROCESSING STEP

    scaling_factor = args.scaling_factor
    translation = args.translation

    n_train = train_x.shape[0]  # number of training examples/samples
    n_test = test_x.shape[0]  # number of test examples/samples

    n_in = train_x.shape[1]  # number of features / dimensions
    n_out = train_y.shape[1]  # number of steps ahead to be predicted

    # Reshape training and test sets
    train_x = train_x.reshape(n_train, n_in, 1)
    test_x = test_x.reshape(n_test, n_in, 1)

    # Apply preprocessing
    train_x_ = affine_transformation(train_x, scaling_factor, translation)
    train_y_ = affine_transformation(train_y, scaling_factor, translation)
    test_x_ = affine_transformation(test_x, scaling_factor, translation)
    test_y_ = affine_transformation(test_y, scaling_factor, translation)
    train_y_series_ = affine_transformation(train_y_series, scaling_factor,
                                            translation)
    test_y_series_ = affine_transformation(test_y_series, scaling_factor,
                                           translation)

    # %%
    # Model hyperparameters and ANN Architecture

    stateful = args.stateful

    if stateful:
        x = Input(shape=(n_in, 1), batch_shape=(1, n_in, 1))  # input layer
    else:
        x = Input(shape=(n_in, 1))  # input layer
    h = x

    h = LSTM(units=args.layer_size, stateful=stateful)(h)  # hidden layer

    out = Dense(units=n_out, activation=None)(h)  # output layer

    model = Model(inputs=x, outputs=out)

    if args.verbose > 0:
        model.summary()

    def root_mean_squared_error(y_true, y_pred):
        return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

    loss_function = root_mean_squared_error

    metrics = ['mean_absolute_error', 'mean_absolute_percentage_error']

    lr = args.lrearning_rate
    epsilon = args.epsilon
    optimizer_selection = {
        'Adadelta':
        optimizers.Adadelta(lr=lr, rho=0.95, epsilon=epsilon, decay=0.0),
        'Adagrad':
        optimizers.Adagrad(lr=lr, epsilon=epsilon, decay=0.0),
        'Adam':
        optimizers.Adam(lr=lr,
                        beta_1=0.9,
                        beta_2=0.999,
                        epsilon=epsilon,
                        decay=0.0,
                        amsgrad=False),
        'Adamax':
        optimizers.Adamax(lr=lr,
                          beta_1=0.9,
                          beta_2=0.999,
                          epsilon=epsilon,
                          decay=0.0),
        'Nadam':
        optimizers.Nadam(lr=lr,
                         beta_1=0.9,
                         beta_2=0.999,
                         epsilon=epsilon,
                         schedule_decay=0.004),
        'RMSprop':
        optimizers.RMSprop(lr=lr, rho=0.9, epsilon=epsilon, decay=0.0),
        'SGD':
        optimizers.SGD(lr=lr, momentum=0.0, decay=0.0, nesterov=False)
    }

    optimizer = optimizer_selection[args.optimizer]

    model.compile(optimizer=optimizer, loss=loss_function, metrics=metrics)

    # %%
    # Save trained models for every epoch

    models_path = r'artificial_neural_networks/trained_models/'
    model_name = 'sunspots_lstm_dense'
    weights_path = models_path + model_name + '_weights'
    model_path = models_path + model_name + '_model'
    file_suffix = '_{epoch:04d}_{val_loss:.4f}_{val_mean_absolute_error:.4f}'

    if args.save_weights_only:
        file_path = weights_path
    else:
        file_path = model_path

    file_path += file_suffix

    monitor = 'val_loss'

    if args.save_models:
        checkpoint = ModelCheckpoint(file_path + '.h5',
                                     monitor=monitor,
                                     verbose=args.verbose,
                                     save_best_only=args.save_best,
                                     mode='auto',
                                     save_weights_only=args.save_weights_only)
        callbacks = [checkpoint]
    else:
        callbacks = []

    # %%
    # TRAINING PHASE
    """
    if stateful:
        shuffle = False
    else:
        shuffle = True
    """

    if args.time_training:
        start = timer()

    for i in range(0, args.n_epochs):
        if args.verbose > 0:
            print('Epoch: {0}/{1}'.format(i + 1, args.n_epochs))

        model.fit(x=train_x_,
                  y=train_y_,
                  validation_data=(test_x_, test_y_),
                  batch_size=args.batch_size,
                  epochs=1,
                  verbose=args.verbose,
                  callbacks=callbacks,
                  shuffle=True)

        if stateful:
            model.reset_states()

    if args.time_training:
        end = timer()
        duration = end - start
        print('Total time for training (in seconds):')
        print(duration)

    # %%

    def model_predict(x_, y_):
        """
        Predict using the LSTM Model (Multi-step ahead Forecasting)
        """
        n_y_ = y_.shape[0]

        y_pred = np.zeros(n_y_)

        if args.recursive:  # Recursive Strategy # TODO
            if args.verbose > 0:
                print('Following Recursive Strategy ...')

            n_x_ = x_.shape[0]

            n_iter = int(np.floor(n_x_ / steps_ahead))
            L_last_window = n_x_ % steps_ahead

            first = 0

            # Multi-step ahead Forecasting of all the full windows
            for i in range(0, n_iter):
                """ if args.verbose > 0:
                    print('Completed: {0}/{1}'.format(i + 1, n_iter + 1)) """

                pred_start = i * steps_ahead
                pred_end = pred_start + steps_ahead

                # first time step of each window (no recursion possible)
                j = pred_start
                k = j - pred_start  # (always zero and unused)
                x_dyn = np.copy(x_[j:j + 1])  # use actual values only
                y_dyn = model.predict(x_dyn)[:, first]
                y_pred[j:j + 1] = y_dyn

                # remaining time steps of each window (with recursion)
                for j in range(pred_start + 1, pred_end):
                    k = j - pred_start
                    x_dyn = np.copy(x_[j:j +
                                       1])  # use actual values (if possible)
                    x_start = np.max([0, look_back - k])
                    y_start = np.max([0, k - look_back]) + pred_start
                    # y_start = np.max([pred_start, j - look_back])
                    x_dyn[0, x_start:look_back,
                          0] = np.copy(y_pred[y_start:j])  # use pred. values
                    y_dyn = model.predict(x_dyn)[:, first]
                    # y_after = np.max([0, y_dyn]) + 0.015 * np.random.randn()
                    y_pred[j:j + 1] = np.max([0, y_dyn])
                    # y_pred[j:j + 1] = y_dyn

            # Multi-step ahead Forecasting of the last window
            if L_last_window > 0:
                """ if args.verbose > 0:
                    print('Completed: {0}/{1}'.format(n_iter + 1, n_iter + 1)) """

                pred_start = n_x_ - L_last_window
                pred_end = n_y_

                # first time step of the last window (no recursion possible)
                j = pred_start
                k = j - pred_start  # (always zero and unused)
                x_dyn = np.copy(x_[j:j + 1])  # use actual values only
                y_dyn = model.predict(x_dyn)[:, first]
                y_pred[j:j + 1] = y_dyn

                # remaining time steps of the last window (with recursion)
                for j in range(pred_start + 1, pred_end):
                    k = j - pred_start
                    x_dyn = np.roll(x_dyn, -1)  # use act. values (if possible)
                    x_start = np.max([0, look_back - k])
                    y_start = np.max([0, k - look_back]) + pred_start
                    # y_start = np.max([pred_start, j - look_back])
                    x_dyn[0, x_start:look_back,
                          0] = np.copy(y_pred[y_start:j])  # use pred. values
                    y_dyn = model.predict(x_dyn)[:, first]
                    # y_after = np.max([0, y_dyn]) + 0.015 * np.random.randn()
                    y_pred[j:j + 1] = np.max([0, y_dyn])
                    # y_pred[j:j + 1] = y_dyn
            """
            # One-step ahead Forecasting

            n_x_ = x_.shape[0]
            for i in range(0, n_x_):
                x_dyn = x_[i:i+1]
                y_dyn = model.predict(x_dyn)[0, 0]
                y_pred[i] = y_dyn

            for i in range(n_x_, n_y):
                x_dyn[0, :, 0] = y_[i - look_back:i]
                y_dyn = model.predict(x_dyn)[0, 0]
                y_pred[i] = y_dyn
            """
        else:  # Multiple Ouptput Strategy # TODO
            if args.verbose > 0:
                print('Following Multiple Ouptput Strategy ...')

            n_iter = int(np.floor(n_y_ / steps_ahead))
            L_last_window = n_y_ % steps_ahead

            y_dyn = x_[0, steps_ahead]
            # Multi-step ahead Forecasting of all the full windows
            for i in range(0, n_iter):
                pred_start = i * steps_ahead
                pred_end = pred_start + steps_ahead
                x_dyn = x_[pred_start:pred_start + 1]  # TODO
                y_dyn = model.predict(x_dyn)[0]
                y_pred[pred_start:pred_end] = y_dyn

            # Multi-step ahead Forecasting of the last window
            if L_last_window > 0:
                pred_start = n_y_ - L_last_window
                pred_end = n_y_
                x_dyn[0, :, 0] = y_[pred_end - look_back:pred_end]
                y_dyn = model.predict(x_dyn)[0]
                y_pred[pred_start:pred_end] = y_dyn[:L_last_window]

        return y_pred

    # %%
    # TESTING PHASE

    # Predict preprocessed values
    train_y_sum = [0]
    test_y_sum = [0]
    reps = 1
    for i in range(reps):
        train_y_pred_ = model_predict(train_x_, train_y_series_)
        test_y_pred_ = model_predict(test_x_, test_y_series_)

        train_y_sum = np.sum([train_y_sum, train_y_pred_], axis=0)
        test_y_sum = np.sum([test_y_sum, test_y_pred_], axis=0)

    train_y_pred_ = train_y_sum / reps
    test_y_pred_ = test_y_sum / reps

    # Remove preprocessing
    train_y_pred = affine_transformation(train_y_pred_,
                                         scaling_factor,
                                         translation,
                                         inverse=True)
    test_y_pred = affine_transformation(test_y_pred_,
                                        scaling_factor,
                                        translation,
                                        inverse=True)

    train_rmse = sqrt(mean_squared_error(train_y_series, train_y_pred))
    train_mae = mean_absolute_error(train_y_series, train_y_pred)
    train_r2 = r2_score(train_y_series, train_y_pred)

    test_rmse = sqrt(mean_squared_error(test_y_series, test_y_pred))
    test_mae = mean_absolute_error(test_y_series, test_y_pred)
    test_r2 = r2_score(test_y_series, test_y_pred)

    if args.verbose > 0:
        print('Train RMSE: %.4f ' % (train_rmse))
        print('Train MAE: %.4f ' % (train_mae))
        print('Train (1 - R_squared): %.4f ' % (1.0 - train_r2))
        print('Train R_squared: %.4f ' % (train_r2))
        print('')
        print('Test RMSE: %.4f ' % (test_rmse))
        print('Test MAE: %.4f ' % (test_mae))
        print('Test (1 - R_squared): %.4f ' % (1.0 - test_r2))
        print('Test R_squared: %.4f ' % (test_r2))

    # %%
    # Data Visualization

    if args.plot:
        regression_figs(train_y=train_y_series,
                        train_y_pred=train_y_pred,
                        test_y=test_y_series,
                        test_y_pred=test_y_pred)

    # %%
    # Save the architecture and the lastly trained model

    save_regress_model(model, models_path, model_name, weights_path,
                       model_path, file_suffix, test_rmse, test_mae, args)

    # %%

    return model
Пример #16
0
def create_network_v8():
    # Define the neural network architecture
    model = kmodels.Sequential()

    penalty = 0.0001

    model.add(
        klayers.Conv2D(12, (5, 5),
                       input_shape=input_shape,
                       activation='relu',
                       padding='same',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(
        klayers.Conv2D(24, (5, 5),
                       activation='relu',
                       padding='same',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(
        klayers.Conv2D(24, (3, 3),
                       activation='relu',
                       padding='same',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(
        klayers.Conv2D(24, (3, 3),
                       activation='relu',
                       padding='same',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(
        klayers.Conv2D(24, (3, 3),
                       activation='relu',
                       padding='same',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(
        klayers.Conv2D(24, (3, 3),
                       activation='relu',
                       kernel_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    #model.add(klayers.Conv2D(
    #    5, (1, 1),
    #    activation='relu',
    #    kernel_regularizer=kregularizers.l2(0.01)))
    #model.add(klayers.MaxPooling2D(pool_size=(2, 2)))

    model.add(klayers.GlobalAveragePooling2D())

    #model.add(klayers.Flatten())
    model.add(klayers.Dropout(0.2))
    model.add(
        klayers.Dense(8,
                      activation='relu',
                      kernel_regularizer=kregularizers.l2(penalty),
                      bias_regularizer=kregularizers.l2(penalty)))
    model.add(klayers.Dropout(0.1))
    model.add(
        klayers.Dense(1,
                      activation='sigmoid',
                      kernel_regularizer=kregularizers.l2(penalty),
                      bias_regularizer=kregularizers.l2(penalty)))

    model.compile(
        loss='binary_crossentropy',
        optimizer=koptimizers.Adadelta(lr=0.7),  #'adadelta',
        metrics=['accuracy',
                 completeness_metric(0),
                 purity_metric(0)])

    return model
Пример #17
0
class kerasDef:
    config = Configuration()
    config.readConfig(config.configFile)
    
    runKeras = config.runKeras
    alwaysRetrain = config.alwaysRetrainKeras
    alwaysImprove = config.alwaysImproveKeras
    
    # Format: [number_neurons_HL1, number_neurons_HL2, number_neurons_HL3,...]
    hidden_layers = config.hidden_layersKeras

    # Stock Optimizers: Adagrad (recommended), Adam, Ftrl, RMSProp, SGD
    # https://www.tensorflow.org/api_guides/python/train
    #optimizer = "Adagrad"

    # Additional optimizers: ProximalAdagrad, AdamOpt, Adadelta,
    #                        GradientDescent, ProximalGradientDescent,
    # https://www.tensorflow.org/api_guides/python/train
    optimizer = config.optimizerKeras
    
    l2_reg_strength = config.l2_reg_strengthKeras
    
    learning_rate = config.learning_rateKeras
    learning_decay_rate = config.learning_decay_rateKeras
    
    
    # activation functions: https://keras.io/activations/
    # softmax, elu, relu, selu, softplus, softsign, tanh, sigmoid,
    # hard_sigmoid, linear
    activation_function = config.activation_functionKeras
    
    # When not None, the probability of dropout.
    dropout_perc = config.dropout_percKeras
    
    trainingSteps = config.trainingStepsKeras    # number of training steps
    fullBatch = config.fullBatchKeras
    batchSize = config.batchSizeKeras
    
    # Setting them both to zero disables Histograms tracnking in tensorboard
    tbHistogramFreq = config.tbHistogramFreqKeras
    
    thresholdProbabilityPred = config.thresholdProbabilityPredKeras
    
    plotModel = config.plotModelKeras

    #*************************************************
    # Setup variables and definitions- do not change.
    #*************************************************
    if runKeras == True:
        import tensorflow as tf
        import keras.optimizers as opt
        from keras.layers import Activation
            
        if optimizer == "SGD":
            optimizer_tag = " SGD, learn_rate: "+str(learning_rate)
            optimizer = opt.SGD(lr=learning_rate, decay=learning_decay_rate,
                momentum=0.9, nesterov=True)
            
        if optimizer == "Adagrad":
            optimizer_tag = " Adagrad, learn_rate: "+str(learning_rate)
            optimizer = opt.Adagrad(lr=learning_rate, epsilon=1e-08,
                decay=learning_decay_rate)
        
        if optimizer == "Adadelta":
            optimizer_tag = " AdaDelta, learn_rate: "+str(learning_rate)
            optimizer = opt.Adadelta(lr=learning_rate, epsilon=1e-08, rho=0.95,
                decay=learning_decay_rate)
            
        if optimizer == "Adam":
            optimizer_tag = " Adam, learn_rate: "+str(learning_rate)
            optimizer = opt.Adam(lr=learning_rate, beta_1=0.9,
                                        beta_2=0.999, epsilon=1e-08,
                                        decay=learning_decay_rate,
                                        amsgrad=False)

        if optimizer == "Adamax":
            optimizer_tag = " Adamax, learn_rate: "+str(learning_rate)
            optimizer = opt.Adamax(lr=learning_rate, beta_1=0.9,
                                        beta_2=0.999, epsilon=1e-08,
                                        decay=learning_decay_rate)

        if optimizer == "RMSprop":
            optimizer_tag = " RMSprop, learn_rate: "+str(learning_rate)
            optimizer = opt.RMSprop(lr=learning_rate, rho=0.95,
                                        epsilon=1e-08,
                                        decay=learning_decay_rate)

        '''
Пример #18
0
    def create_adadelta(self):
        if self.learning_rate is None: self.learning_rate = 1
        self.momentum = None

        return optimizers.Adadelta(lr=self.learning_rate, rho=0.95)
batch_size = 8 * np.random.randint(4, 10)  # 64
number_of_epoch = 80

type = 2  # np.random.randint(1, 8)
optimizer_range = ['Adadelta', 'Adam', 'Adamax', 'Nadam']

optimizer_name = random.choice(optimizer_range)
dropout = np.random.rand(3) > 0.5
datageneration = 1
lr_reduce_factor = 1 / np.random.uniform(2, 10)

momentum = None
if (optimizer_name == 'Adadelta'):
    learn_rate_range = [0.5, 1.5]
    learn_rate = random.uniform(learn_rate_range[0], learn_rate_range[1])
    optimizer = optimizers.Adadelta(lr=learn_rate)
elif (optimizer_name == 'Adam'):
    learn_rate_range = [0.0005, 0.005]
    learn_rate = random.uniform(learn_rate_range[0], learn_rate_range[1])
    optimizer = optimizers.Adam(lr=learn_rate)
elif (optimizer_name == 'Adamax'):
    learn_rate_range = [0.0005, 0.005]
    learn_rate = random.uniform(learn_rate_range[0], learn_rate_range[1])
    optimizer = optimizers.Adamax(lr=learn_rate)
elif (optimizer_name == 'Nadam'):
    learn_rate_range = [0.0005, 0.005]
    learn_rate = random.uniform(learn_rate_range[0], learn_rate_range[1])
    optimizer = optimizers.Nadam(lr=learn_rate)

print 'Random parameters: batch=', batch_size, ' opt=', optimizer_name, ' learning rate=', learn_rate, ' dropout=', dropout, ' lr_reduce_factor=', lr_reduce_factor
Пример #20
0
elif algorithm == 'sgd':
    optimizer = opt.SGD(lr=0.01,
                        momentum=0.0,
                        decay=0.0,
                        nesterov=False,
                        clipnorm=clipnorm,
                        clipvalue=clipvalue)
elif algorithm == 'adagrad':
    optimizer = opt.Adagrad(lr=0.01,
                            epsilon=1e-06,
                            clipnorm=clipnorm,
                            clipvalue=clipvalue)
elif algorithm == 'adadelta':
    optimizer = opt.Adadelta(lr=1.0,
                             rho=0.95,
                             epsilon=1e-06,
                             clipnorm=clipnorm,
                             clipvalue=clipvalue)
elif algorithm == 'adam':
    optimizer = opt.Adam(lr=0.001,
                         beta_1=0.9,
                         beta_2=0.999,
                         epsilon=1e-08,
                         clipnorm=clipnorm,
                         clipvalue=clipvalue)
elif algorithm == 'adamax':
    optimizer = opt.Adamax(lr=0.002,
                           beta_1=0.9,
                           beta_2=0.999,
                           epsilon=1e-08,
                           clipnorm=clipnorm,
Пример #21
0
	def __call__(self):
		return optimizers.Adadelta()
Пример #22
0
def lstm_dense_sunspots(args):
    """
    Main function
    """
    # %%
    # IMPORTS

    # code repository sub-package imports
    from artificial_neural_networks.code.utils.download_monthly_sunspots import \
        download_monthly_sunspots
    from artificial_neural_networks.code.utils.generic_utils import save_regress_model, \
        series_to_supervised, affine_transformation
    from artificial_neural_networks.code.utils.vis_utils import regression_figs

    # %%

    if args.verbose > 0:
        print(args)

    # For reproducibility
    if args.reproducible:
        os.environ['PYTHONHASHSEED'] = '0'
        np.random.seed(args.seed)
        rn.seed(args.seed)
        tf.set_random_seed(args.seed)
        sess = tf.Session(graph=tf.get_default_graph())
        K.set_session(sess)
        # print(hash("keras"))

    # %%
    # Load the Monthly sunspots dataset

    sunspots_path = download_monthly_sunspots()
    sunspots = np.genfromtxt(fname=sunspots_path,
                             dtype=np.float32,
                             delimiter=",",
                             skip_header=1,
                             usecols=1)

    # %%
    # Train-Test split

    L_series = len(sunspots)

    split_ratio = 2 / 3  # between zero and one
    n_split = int(L_series * split_ratio)

    look_back = args.look_back

    train = sunspots[:n_split]
    test = sunspots[n_split - look_back:]

    train_x, train_y = series_to_supervised(train, look_back)
    test_x, test_y = series_to_supervised(test, look_back)

    # %%
    # PREPROCESSING STEP

    scaling_factor = args.scaling_factor
    translation = args.translation

    n_train = train_x.shape[0]  # number of training examples/samples
    n_test = test_x.shape[0]  # number of test examples/samples

    n_in = train_x.shape[1]  # number of features / dimensions
    n_out = train_y.shape[1]  # number of steps ahead to be predicted

    # Reshape training and test sets
    train_x = train_x.reshape(n_train, n_in, 1)
    test_x = test_x.reshape(n_test, n_in, 1)

    # Apply preprocessing
    train_x_ = affine_transformation(train_x, scaling_factor, translation)
    train_y_ = affine_transformation(train_y, scaling_factor, translation)
    test_x_ = affine_transformation(test_x, scaling_factor, translation)
    test_y_ = affine_transformation(test_y, scaling_factor, translation)

    # %%
    # Model hyperparameters and ANN Architecture

    x = Input(shape=(n_in, 1))  # input layer
    h = x

    h = LSTM(units=args.layer_size)(h)  # hidden layer

    out = Dense(units=n_out, activation=None)(h)  # output layer

    model = Model(inputs=x, outputs=out)

    if args.verbose > 0:
        model.summary()

    def root_mean_squared_error(y_true, y_pred):
        return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

    loss_function = root_mean_squared_error

    metrics = ['mean_absolute_error', 'mean_absolute_percentage_error']

    lr = args.lrearning_rate
    epsilon = args.epsilon
    optimizer_selection = {
        'Adadelta':
        optimizers.Adadelta(lr=lr, rho=0.95, epsilon=epsilon, decay=0.0),
        'Adagrad':
        optimizers.Adagrad(lr=lr, epsilon=epsilon, decay=0.0),
        'Adam':
        optimizers.Adam(lr=lr,
                        beta_1=0.9,
                        beta_2=0.999,
                        epsilon=epsilon,
                        decay=0.0,
                        amsgrad=False),
        'Adamax':
        optimizers.Adamax(lr=lr,
                          beta_1=0.9,
                          beta_2=0.999,
                          epsilon=epsilon,
                          decay=0.0),
        'Nadam':
        optimizers.Nadam(lr=lr,
                         beta_1=0.9,
                         beta_2=0.999,
                         epsilon=epsilon,
                         schedule_decay=0.004),
        'RMSprop':
        optimizers.RMSprop(lr=lr, rho=0.9, epsilon=epsilon, decay=0.0),
        'SGD':
        optimizers.SGD(lr=lr, momentum=0.0, decay=0.0, nesterov=False)
    }

    optimizer = optimizer_selection[args.optimizer]

    model.compile(optimizer=optimizer, loss=loss_function, metrics=metrics)

    # %%
    # Save trained models for every epoch

    models_path = r'artificial_neural_networks/trained_models/'
    model_name = 'sunspots_lstm_dense'
    weights_path = models_path + model_name + '_weights'
    model_path = models_path + model_name + '_model'
    file_suffix = '_{epoch:04d}_{val_loss:.4f}_{val_mean_absolute_error:.4f}'

    if args.save_weights_only:
        file_path = weights_path
    else:
        file_path = model_path

    file_path += file_suffix

    monitor = 'val_loss'

    if args.save_models:
        checkpoint = ModelCheckpoint(file_path + '.h5',
                                     monitor=monitor,
                                     verbose=args.verbose,
                                     save_best_only=args.save_best,
                                     mode='auto',
                                     save_weights_only=args.save_weights_only)
        callbacks = [checkpoint]
    else:
        callbacks = []

    # %%
    # TRAINING PHASE

    if args.time_training:
        start = timer()

    model.fit(x=train_x_,
              y=train_y_,
              validation_data=(test_x_, test_y_),
              batch_size=args.batch_size,
              epochs=args.n_epochs,
              verbose=args.verbose,
              callbacks=callbacks)

    if args.time_training:
        end = timer()
        duration = end - start
        print('Total time for training (in seconds):')
        print(duration)

    # %%
    # TESTING PHASE

    # Predict preprocessed values
    train_y_pred_ = model.predict(train_x_)[:, 0]
    test_y_pred_ = model.predict(test_x_)[:, 0]

    # Remove preprocessing
    train_y_pred = affine_transformation(train_y_pred_,
                                         scaling_factor,
                                         translation,
                                         inverse=True)
    test_y_pred = affine_transformation(test_y_pred_,
                                        scaling_factor,
                                        translation,
                                        inverse=True)

    train_rmse = sqrt(mean_squared_error(train_y, train_y_pred))
    train_mae = mean_absolute_error(train_y, train_y_pred)
    train_r2 = r2_score(train_y, train_y_pred)

    test_rmse = sqrt(mean_squared_error(test_y, test_y_pred))
    test_mae = mean_absolute_error(test_y, test_y_pred)
    test_r2 = r2_score(test_y, test_y_pred)

    if args.verbose > 0:
        print('Train RMSE: %.4f ' % (train_rmse))
        print('Train MAE: %.4f ' % (train_mae))
        print('Train (1 - R_squared): %.4f ' % (1.0 - train_r2))
        print('Train R_squared: %.4f ' % (train_r2))
        print('')
        print('Test RMSE: %.4f ' % (test_rmse))
        print('Test MAE: %.4f ' % (test_mae))
        print('Test (1 - R_squared): %.4f ' % (1.0 - test_r2))
        print('Test R_squared: %.4f ' % (test_r2))

    # %%
    # Data Visualization

    if args.plot:
        regression_figs(train_y=train_y,
                        train_y_pred=train_y_pred,
                        test_y=test_y,
                        test_y_pred=test_y_pred)

    # %%
    # Save the architecture and the lastly trained model

    save_regress_model(model, models_path, model_name, weights_path,
                       model_path, file_suffix, test_rmse, test_mae, args)

    # %%

    return model
Пример #23
0
           activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

# Horovod: adjust learning rate based on number of GPUs.
opt = optimizers.Adadelta(1.0 * hvd.size())

# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all processes when
# training is started with random weights or restored from a checkpoint.

callbacks.append(hvd.callbacks.BroadcastGlobalVariablesCallback(0))

# Horovod: print model summary only on rank 0.
if hvd.rank() == 0:
    print(model.summary())
Пример #24
0
# set the first 10 layers to non-trainable
for layer in model.layers[:10]:
    layer.trainable = False

# build custom model
reg = Flatten()(model.output)
reg = Dense(1024, activation='relu')(reg)
reg = Dropout(0.5)(reg)
reg = Dense(3, activation='linear')(reg)

# combine into tuned model
tuned_model = Model(input=model.input, output=reg)
tuned_model.compile(
    loss='mse',
    metrics=['mse'],
    optimizer=optimizers.Adadelta(lr=0.1),
)

# prepare train data augmentation configuration
train_datagen = ImageDataGenerator(**IMG_AUG)
test_datagen = ImageDataGenerator(rescale=IMG_AUG['rescale'])

# read training y
labels = pd.read_csv('labels.csv').set_index('id')
y = labels.values

# read training X
train_palm_fname = ['data/ %d.jpg' % fname for fname in labels.index.tolist()]
X = np.zeros((len(train_palm_fname), IMG_WIDTH, IMG_HEIGHT, 3))
for idx, fname in enumerate(train_palm_fname):
    X[idx, :, :, :] = np.array(
Пример #25
0
                    )
                    ret_array = np.concatenate([leftover_array, new_array])
                    new_batch = True
                    left_over_array = np.zeros(
                        shape=[0, image_height, image_width])

        assert (ret_array.shape[0] == batch_size)
        num_batches_generated += 1
        ret_array = np.reshape(ret_array,
                               (len(ret_array), 1, image_height, image_width))
        yield ret_array


if __name__ == '__main__':

    my_opt = optimizers.Adadelta()
    #get the data
    try:
        data_folder = os.environ["DATA"]
    except KeyError:
        "Please cd into the module's base folder and run set_env from there."

    file_list = os.listdir(data_folder)
    train_data_list = file_list[
        0:
        47]  #choosing 63 here keeps ~80% of data for testing, rest for training and val, need to automatize this
    val_data_list = file_list[
        47:
        63]  #choosing 63 here keeps ~80% of data for testing, rest for training and val, need to automatize this
    test_data_list = file_list[63:]
Пример #26
0
def test_adadelta():
    _test_optimizer(optimizers.Adadelta(), target=0.6)
    _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Пример #27
0
    return cce


#nitialize the Reward predictor model
Qmodel = Sequential()
#model.add(Dense(num_env_variables+num_env_actions, activation='tanh', input_dim=dataX.shape[1]))
Qmodel.add(Dense(2048, activation='relu', input_dim=dataX.shape[1]))
#Qmodel.add(Dropout(0.2))
#Qmodel.add(Dense(256, activation='relu'))
#Qmodel.add(Dropout(0.5))
#Qmodel.add(Dense(128, activation='relu'))
#Qmodel.add(Dropout(0.5))

Qmodel.add(Dense(dataY.shape[1]))
#opt = optimizers.adadelta(lr=learning_rate)
opt = optimizers.Adadelta()

Qmodel.compile(loss='mse', optimizer=opt, metrics=['accuracy'])

#initialize the action predictor model
action_predictor_model = Sequential()
#model.add(Dense(num_env_variables+num_env_actions, activation='tanh', input_dim=dataX.shape[1]))
action_predictor_model.add(
    Dense(2048, activation='relu', input_dim=apdataX.shape[1]))
#action_predictor_model.add(Dropout(0.5))
#action_predictor_model.add(Dense(256, activation='relu'))
#action_predictor_model.add(Dropout(0.5))
#action_predictor_model.add(Dense(128, activation='relu'))
#action_predictor_model.add(Dropout(0.5))

action_predictor_model.add(Dense(apdataY.shape[1]))
Пример #28
0
def fine_tune(train_data, train_labels, sx, sy, max_index, epochs, batch_size,
              input_folder, result_path):
    print(train_data.shape, train_labels.shape)

    #load full model with imagenet weights
    model = applications.InceptionV3(weights='imagenet',
                                     include_top=False,
                                     input_shape=(sx, sy, 3))
    print('Model loaded')

    #create top model
    top_model = Sequential()
    top_model.add(Flatten(input_shape=model.output_shape[1:]))
    top_model.add(Dropout(0.3))
    top_model.add(Dense(256, activation='relu'))
    top_model.add(Dropout(0.3))
    top_model.add(Dense(52, activation='softmax'))

    #load top model weights
    top_model.load_weights(result_path + 'bottleneck_fc_model.h5')

    #join models
    new_model = Sequential()
    new_model.add(model)
    new_model.add(top_model)

    #optimizer settings
    lr = 0.0001
    decay = 1e-6
    momentum = 0.9
    #optimizer = optimizers.SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
    optimizer = optimizers.Adadelta()
    loss = 'categorical_crossentropy'
    new_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

    fineture_log = result_path + 'training_' + str(
        max_index) + '_finetune_log.csv'
    csv_logger_finetune = callbacks.CSVLogger(fineture_log)
    earlystop = EarlyStopping(monitor='val_acc',
                              min_delta=0.0001,
                              patience=5,
                              verbose=1,
                              mode='auto')

    #create data generators for training model
    datagen = ImageDataGenerator(featurewise_center=True,
                                 rotation_range=90,
                                 width_shift_range=0.1,
                                 height_shift_range=0.1,
                                 zoom_range=0.1,
                                 horizontal_flip=1,
                                 vertical_flip=1,
                                 shear_range=0.05)

    datagen.fit(train_data)

    generator = datagen.flow(train_data,
                             train_labels,
                             batch_size=batch_size,
                             shuffle=True)

    validation_generator = datagen.flow(train_data,
                                        train_labels,
                                        batch_size=batch_size,
                                        shuffle=True)

    new_model.fit_generator(generator,
                            epochs=epochs,
                            steps_per_epoch=len(train_data) // batch_size,
                            validation_data=validation_generator,
                            validation_steps=len(train_data) // batch_size //
                            5,
                            callbacks=[csv_logger_finetune, earlystop],
                            verbose=2)

    with open(fineture_log, 'a') as log:
        log.write('\n')
        log.write('input images: ' + input_folder + '\n')
        log.write('batch_size:' + str(batch_size) + '\n')
        log.write('learning rate: ' + str(lr) + '\n')
        log.write('learning rate decay: ' + str(decay) + '\n')
        log.write('momentum: ' + str(momentum) + '\n')
        log.write('loss: ' + loss + '\n')

    new_model.save(result_path + 'FinalModel.h5'
                   )  # save the final model for future loading and prediction
Пример #29
0
    else:
        print('new model')
        layers = []
        layers.append(
            Dense(1, input_dim=hogmat_size, activation='relu', use_bias=True))
        layers.append(
            Dense(1, activation='sigmoid',
                  kernel_initializer='random_uniform'))

        #layers.append(Dense( 1, activation='softmax' )     )
        #layers.append( Dropout(.5 , noise_shape=None, seed=None))
        model = Sequential(layers)

    #sgd = optimizers.SGD(lr= 1, momentum=0.1, decay=0.01, nesterov=False)
    #sgd = optimizers.Adagrad(lr=0.01, epsilon=.01, decay=0.01)
    sgd = optimizers.Adadelta(lr=.10, rho=0.095, epsilon=None, decay=0.0)
    #sgd = optimizers.RMSprop(lr=1, rho=0.9, epsilon=None, decay=0.0)
    model.compile(loss='binary_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])
    tstart = t.time()

    print('loading dataset')
    with open(traintest, 'rb') as traintestin:
        xtotalmat, ytotalmat, xtesttotalmat, ytesttotalmat = pickle.loads(
            traintestin.read())
    print('done')
    print('training')
    metrics = model.fit(x=xtotalmat,
                        y=ytotalmat,
                        batch_size=500,
def testKeras(examples, labels, subsetPercent = 0.2, desiredError = 0.001, timeLimit = 30):

    # Test each algorithm on a smaller dataset.

    exampleSubset = examples[0:int(len(examples)*subsetPercent)]
    labelSubset = labels[0:int(len(labels)*subsetPercent)]

    max_iterations = 10000
    estimatedIters = []

    allResults = []

    for i in range(7):

        plt.figure(i+1)

        # Create Model for Keras
        model = Sequential()
        model.add(Dense(units=1, activation='linear', input_dim=featureSize))

        # Choose GD Algorithm for Keras
        if (i == 0):
            myOpt = optimizers.SGD(lr=0.01, momentum=0., decay=0., nesterov=False)
            plt.title("SGD")
        elif (i == 1):
            myOpt = optimizers.SGD(lr=0.01, momentum=0.9, decay=0., nesterov=False)
            plt.title("Momentum")
        elif (i == 2):
            myOpt = optimizers.SGD(lr=0.01, momentum=0.9, decay=0., nesterov=True)
            plt.title("Nesterov-Momentum")
        elif (i == 3):
            myOpt = optimizers.Adagrad(lr=0.01, epsilon=1e-6)
            plt.title("Adagrad")
        elif (i == 4):
            myOpt = optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-6)
            plt.title("Adadelta")
        elif (i == 5):
            myOpt = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-6)
            plt.title("RMSprop")
        elif (i == 6):
            myOpt = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
            plt.title("Adam")

        model.compile(optimizer=myOpt, loss=logloss)

        # Create Custom Callback. Run GD. History saved in output. Use it to find the changes in loss per iteration
        customCallback = EarlyStoppingByDeltaLossOrTime(desiredError, timeLimit)
        myCallbacks = [customCallback]
        output = model.fit(exampleSubset, labelSubset, epochs=max_iterations, batch_size=int(len(exampleSubset)/50), callbacks=myCallbacks)
        losses = np.array(output.history['loss'])
        deltaLosses = -np.diff(losses)

        # Run again on the full dataset, for a few iterations. Use this to find the average time per iteration.
        # Reset callback to reset time elapsed and history of losses.
        model = Sequential()
        model.add(Dense(units=1, activation='linear', input_dim=featureSize))
        model.compile(optimizer=myOpt, loss=logloss)
        customCallback = EarlyStoppingByDeltaLossOrTime(desiredError, timeLimit)
        myCallbacks = [customCallback]
        output = model.fit(examples, labels, epochs=5, batch_size=int(len(examples)/50), callbacks=myCallbacks)
        losses = np.array(output.history['loss'])
        timePerIter = myCallbacks[0].timeElapsed/len(losses)

        # Pass in the following:
        # 1. Array of DeltaLosses, iterations is length of array.
        # 2. Average Time per Iteration on the full dataset.
        results = fitGD(deltaLosses, timePerIter, desiredError)
        estimatedIters.append(results[0])
        print("ETI: ", results[0])
        print("ETA: ", results[1])

        allResults.append(results)

    for i in range(len(allResults)):
        print("Algo", i, "Iterations:", allResults[i][0], "ETA:", allResults[i][1])

    plt.show()

    return estimatedIters