Пример #1
0
def generate_samples_end_to_end(filename, patch_size, seed, batch_size=100):
    prng = random.Random()
    prng.seed(seed)

    batch = ([], [])
    with tarfile.open(filename, 'r:*') as tar:
        entries = [x.name for x in tar.getmembers() if x.isreg()]

        while True:
            random.shuffle(entries)

            for thing in entries:
                with tar.extractfile(thing) as jpeg:
                    image = Image.open(jpeg)
                    image.load()
                    try:
                        pix = np.array(image)

                        dynamic_range_factor = 0.99
                        offset = (1 - dynamic_range_factor) / 2

                        if 3 == len(
                                pix.shape
                        ) and 3 == pix.shape[2] and pix.shape[0] > patch_size[
                                0] and pix.shape[1] > patch_size[1]:

                            for i in range(10):
                                offset_row = math.floor(
                                    prng.uniform(0,
                                                 pix.shape[0] - patch_size[0]))
                                offset_col = math.floor(
                                    prng.uniform(0,
                                                 pix.shape[1] - patch_size[1]))
                                chip = dynamic_range_factor * pix[offset_row:(
                                    offset_row + patch_size[0]), offset_col:(
                                        offset_col + patch_size[1]), :].copy(
                                        ).astype(np.float32) / 255 + offset

                                if (patch_size[0], patch_size[1],
                                        3) == chip.shape:
                                    batch[0].append(chip)
                                    batch[1].append(chip)

                                    if len(batch[0]) == batch_size:
                                        yield np.stack(batch[0],
                                                       axis=0), np.stack(
                                                           batch[1], axis=0)
                                        batch[0].clear()
                                        batch[1].clear()
                                        gc.collect()

                        del pix
                    finally:
                        image.close()
                        del image
Пример #2
0
def load_single_image(source_image, img_size=(224, 224)):
    assert os.path.exists(source_image)

    single_image = np.zeros((1, img_size[0], img_size[1], 3))

    image = Image.open(source_image)
    image = image.resize(img_size)
    image.load()
    image_background = Image.new("RGB", image.size, (255, 255, 255))
    image_background.paste(image, mask=image.split()[3])  # Remove any alpha channel
    image = np.array(image_background) / 255.
    single_image[0] = image
    return single_image
Пример #3
0
def normalize(image):
    min_red = 255
    min_green = 255
    min_blue = 255
    max_red = 0
    max_green = 0
    max_blue = 0

    for i in range(IMAGE_WIDTH):
        for j in range(IMAGE_HEIGHT):
            red, green, blue = image.getpixel((i, j))
            if red > max_red:
                max_red = red
            if red < min_red:
                min_red = red
            if green > max_green:
                max_green = green
            if green < min_green:
                min_green = green
            if blue > max_blue:
                max_blue = blue
            if blue < min_blue:
                min_blue = blue

    image_pix = image.load()
    for i in range(IMAGE_WIDTH):
        for j in range(IMAGE_HEIGHT):
            red, green, blue = image.getpixel((i, j))
            modified_red = (red - min_red) / max_red * 255
            modified_green = (green - min_green) / max_green * 255
            modified_blue = (blue - min_blue) / max_blue * 255
            image_pix[i, j] = (int(modified_red), int(modified_green),
                               int(modified_blue), 255)
    return image
Пример #4
0
test_set = train_datagen.flow_from_directory(
    'dataset/test_set',
    target_size = (64,64),
    batch_size = 32,
    class_mode = 'binary')

from IPython.display import display
from PIL import Image

classifier.fit_generator(
    training_set,
    steps_per_epoch = 8000,
    epochs = 5,
    validation_data = test_set,
    validation_steps = 800)

import numpy as np
from keras.preprocessing import image
test_image = image.load('sampleData.jpg', target_size = (64,64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)

if result[0][0] >= 0.5:
    prediction = 'Match'
else:
    prediction = 'No Match'

print(prediction)
Пример #5
0
import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import load_img as load
from keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import decode_predictions

model = VGG16()

image = load('../mug.jpg', target_size=(224, 224))
image = img_to_array(image)
#the first entry is the numbers of images
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# subtract the mean RGB value, computed on the training set, from each pixel
image = preprocess_input(image)

#make prediction
yhat = model.predict(image)

label = decode_predictions(yhat)
label = label[0][:3]

print('%s (%.2f%%)' % (label[0][1], label[0][2] * 100))
print('%s (%.2f%%)' % (label[1][1], label[1][2] * 100))
print('%s (%.2f%%)' % (label[2][1], label[2][2] * 100))
Пример #6
0
                                         shear_range=0.2,
                                         height_shift_range=0.07,
                                         zoom_range=0.2)

gerador_teste = ImageDataGenerator(rescale=1. / 255)

base_treinamento = gerador_treinamento.flow_from_directory(
    'dataset/training_set',
    target_size=(64, 64),
    batch_size=32,
    class_mode='binary')

base_teste = gerador_teste.flow_from_directory('dataset/test_set',
                                               target_size=(64, 64),
                                               batch_size=32,
                                               class_mode='binary')

classificador.fit_generator(base_treinamento,
                            steps_per_epoch=4000 / 32,
                            epochs=5,
                            validation_data=base_teste,
                            validation_steps=1000 / 32)

imagem_teste = image.load('/dataset/test_set/gato/cat.3500.jpg',
                          target_size=(64, 64))
imagem_teste = image.img_to_array(imagem_teste)
imagem_teste /= 255
imagem_teste = np.expand_dims(imagem_teste, axis=0)

previsao = classificador.predict(imagem_teste)
base_treinamento.class_indices
Пример #7
0
                                            class_mode='binary')

## start time of training
from datetime import datetime

now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Current Time =", current_time)

classifier.fit_generator(training_set,
                         steps_per_epoch=8000,
                         epochs=25,
                         validation_data=test_set,
                         validation_steps=2000)

classifier.save('h5')

## training end
print("ends")
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Current Time =", current_time)

import numpy as np
from keras.preprocessing import image

test_image = image.load('dataset/single_prediction/cat_or_dog_1.jpg',
                        target_size=(64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
resu