Пример #1
0
def test_H5Dict_attrs():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = H5Dict(path, mode='w')

        # str
        f['x'] = 'abcd'
        f['x2'] = u'abcd'

        # list<bytes>
        f['y'] = [b'efg', b'hij', b'klmn']
        f['y2'] = (b'asd', b'sdf', b'dfg')

        # ndarray
        array = np.random.random((4, 5, 512))
        f['z'] = array

        f.close()
        del f

        f = H5Dict(path, mode='r')

        assert f['x'] == 'abcd'
        assert f['x2'] == u'abcd'
        assert f['y'] == [b'efg', b'hij', b'klmn']
        assert list(f['y2']) == [b'asd', b'sdf', b'dfg']
        assert_allclose(f['z'], array)

        f.close()
    os.remove(h5_path)
Пример #2
0
def test_H5Dict_accepts_pathlib_Path():
    """GitHub issue: 11459"""
    _, h5_path = tempfile.mkstemp('.h5')

    f = H5Dict(Path(h5_path), mode='w')
    f['x'] = 'abcd'
    f.close()
    del f

    f = H5Dict(Path(h5_path), mode='r')
    assert f['x'] == 'abcd'
    f.close()

    os.remove(h5_path)
Пример #3
0
def test_H5Dict_groups():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = H5Dict(path, mode='w')

        group1 = f['group1']
        group2 = group1['group2']

        group2['x'] = 'abcd'

        group3 = group2['group3']
        group3['y'] = [b'efg', b'hij', b'klmn']

        group4 = group3['group4']
        array = np.random.random((4, 5, 512))
        group4['z'] = array

        f.close()

        f = H5Dict(path, mode='r')

        assert 'group1' in f
        group1 = f['group1']

        assert 'group2' in group1
        group2 = group1['group2']
        assert group2['x'] == 'abcd'

        assert 'group3' in group2
        group3 = group2['group3']
        assert group3['y'] == [b'efg', b'hij', b'klmn']

        assert 'group4' in group3
        group4 = group3['group4']
        assert_allclose(group4['z'], array)

        f.close()
    os.remove(h5_path)
Пример #4
0
def probe_model_shape(path):
    h5dict = H5Dict(path, mode='r')

    layers = json.loads(h5dict['model_config'])['config']['layers']
    input_layer = next(l for l in layers if l['name'] == 'input')
    B, T, F = input_layer['config']['batch_input_shape']
    mask_layer = next(l for l in layers if l['name'] == 'mask_reshape')
    T_, F_, C = mask_layer['config']['target_shape']
    embedding_layer = next(l for l in layers
                           if l['name'] == 'embedding_reshape')
    T__, F__, D = embedding_layer['config']['target_shape']

    h5dict.close()
    return T, F, C, D
Пример #5
0
def load_model(filepath, custom_objects=None, compile=True, **kwargs):
    """Loads a model saved via `save_model`.

    This method can be used to resume a training as the optimization states are also restored. 

    Example: Restore a PIB model for training resume. Note that for PIB, always explicitly specify 
        `target_tensors` in `load_model` as the output of PIB is not the same shape as its input. 

        from keras.layers import Input
        from pib.generic_utils import parse_best_keras_checkpoint
        from pib.saving import load_model
        from pib.layers import BinaryStochasticDense
        from pib.losses import weighted_vcr, _update_var
        from pib.metrics import stochastic_categorical_error
    
        pib_model_path = parse_best_keras_checkpoint(checkpoint_path, mode='min', ckpt_type='model')
        custom_objects = {
            'BinaryStochasticDense':BinaryStochasticDense, 
            'stochastic_categorical_error':stochastic_categorical_error, 
            'weighted_vcr': weighted_vcr}
        y_true = Input(shape=(config.layer_sizes[-1],), dtype='float32', name='targets')
        restored_model = load_model(pib_model_path, custom_objects=custom_objects, compile=True, target_tensors=[y_true])

    # Arguments
        filepath: one of the following:
            - string, path to the saved model, or
            - h5py.File or h5py.Group object from which to load the model
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.
        compile: Boolean, whether to compile the model
            after loading.
        kwargs: Custom arguments.  __allowed_kwargs = ['target_tensors', 'config_modifier', 'loss', 'metrics', 'sample_weight_mode', 'loss_weights' ]
            target_tensors: Tensor. It is critical to explicitly provide `target_tensors` for a stochastic model. 
            config_modifier: A function instance that modifies the model config.
            loss: 
            metrics:
            sample_weight_mode:
            loss_weights:


    # Returns
        A Keras model instance. If an optimizer was found
        as part of the saved model, the model is already
        compiled. Otherwise, the model is uncompiled and
        a warning will be displayed. When `compile` is set
        to False, the compilation is omitted without any
        warning.

    # Raises
        ImportError: if h5py is not available.
        ValueError: In case of an invalid savefile.
    """
    if h5py is None:
        raise ImportError('`load_model` requires h5py.')
    model = None
    opened_new_file = not isinstance(filepath, h5py.Group)
    h5dict = H5Dict(filepath, 'r')
    try:
        model = _deserialize_model(h5dict, custom_objects, compile, **kwargs)
    finally:
        if opened_new_file:
            h5dict.close()
    return model
Пример #6
0
def build_internal_rep(inputFile):
    h5dict = H5Dict(inputFile, mode='r')
    model_config = get_json_key(h5dict, 'model_config')
    # Dlib requires an add_loss_layer at the end of the network (I think)
    training_config = get_json_key(h5dict, 'training_config')
    model_layers = model_config['config']['layers']
    optimizer_config = training_config['optimizer_config']
    loss = training_config['loss']

    # This list stores all the Dlib_Layer objects used
    # This prevents problems with python shallow copying if you would pass the
    # layer objects themselves while building the subnetworks
    layers = []
    for layer in model_config['config']['layers']:
        layerClass = layer['class_name']
        print('-- Converting Keras.layers.{}'.format(layerClass))
        layer = layer['config']  # save some verbosity

        # Create additional dlib::input<> for the first Keras layer (input layer)
        isInputLayer = 'batch_input_shape' in layer
        if isInputLayer:
            if len(layers) > 0:
                raise SerializationError(
                    'Unexpected input layer at index {}'.format(len(layers)))
        elif len(layers) == 0:
            raise SerializationError('Expected an input layer as first layer')

        # If we leave out the input matrix size calculation (which is probably a good idea)
        # we can refactor adding the input layer out to here, instead of duplicating it
        # to every layer which could serve as the first layer
        if isInputLayer:
            layers.append(Dlib_matrix_input(layer['dtype']))

        ########################################################################
        # keras.layers.Dense
        ########################################################################
        if layerClass == 'Dense':
            num_outputs = layer['units']
            activation = layer['activation']
            use_bias = layer['use_bias']

            params = load_layer_params_Dense(h5dict, layer['name'], use_bias)
            num_inputs = params.shape[0]
            if use_bias:  # subtract the additional space biases occupy in layer parameters
                num_inputs -= 1

            layers.append(
                Dlib_add_layer(
                    Dlib_fc(num_inputs, num_outputs, params, use_bias),
                    layers[-1], isInputLayer))
            if activation != 'linear':
                layers.append(
                    Dlib_add_layer(Dlib_activation(activation), layers[-1]))
        ########################################################################
        # keras.layers.Conv2d
        ########################################################################
        elif layerClass == 'Conv2D':
            # "data_format": "channels_last"
            # "dilation_rate": [1, 1]
            num_filters = layer['filters']
            nr, nc = layer['kernel_size']
            stride_y, stride_x = layer['strides']
            padding = layer['padding']
            activation = layer['activation']
            use_bias = layer['use_bias']

            # TODO: Figure out how to properly handle valid/same padding to dlib
            # until then we use the same as the default template parameters
            padding_y = 0 if stride_y != 1 else nr // 2
            padding_x = 0 if stride_x != 1 else nc // 2
            if padding == 'valid':
                pass
            elif padding == 'same':
                pass
            else:
                raise SerializationError(
                    'Unsupported layer padding: {}'.format(padding))

            params = load_layer_params_Conv2D(h5dict, layer['name'])

            layers.append(
                Dlib_add_layer(
                    Dlib_con(num_filters, nr, nc, stride_y, stride_x,
                             padding_y, padding_x, params), layers[-1],
                    isInputLayer))
            if activation != 'linear':
                layers.append(
                    Dlib_add_layer(Dlib_activation(activation), layers[-1]))
        ########################################################################
        # keras.layers.MaxPooling2D
        ########################################################################
        elif layerClass == 'MaxPooling2D':
            nr, nc = layer['pool_size']
            stride_y, stride_x = layer['strides']
            padding = layer['padding']

            # TODO: Figure out how to properly handle valid/same padding to dlib
            # until then we use the same as the default template parameters
            padding_y = 0 if stride_y != 1 else nr // 2
            padding_x = 0 if stride_x != 1 else nc // 2
            if padding == 'valid':
                pass
            elif padding == 'same':
                pass
            else:
                raise SerializationError(
                    'Unsupported layer padding: {}'.format(padding))

            layers.append(
                Dlib_add_layer(
                    Dlib_max_pool(nr, nc, stride_y, stride_x, padding_y,
                                  padding_x), layers[-1]))
        ########################################################################
        # keras.layers.Flatten
        ########################################################################
        elif layerClass == 'Flatten':
            # For now we ignore Flatten() Layers, I think dlib works without them
            pass
        ########################################################################
        # keras.layers.Dropout
        ########################################################################
        elif layerClass == 'Dropout':
            layers.append(
                Dlib_add_layer(Dlib_dropout(layer['rate']), layers[-1],
                               isInputLayer))
        ########################################################################
        # keras.layers.LeakyReLU
        ########################################################################
        elif layerClass == 'LeakyReLU':
            layers.append(
                Dlib_add_layer(Dlib_prelu(layer['alpha']), layers[-1]))
        ########################################################################
        # Other layers
        ########################################################################
        else:
            raise SerializationError(
                'Unsupported layer class {}'.format(layerClass))

    layers.append(Dlib_add_loss_layer(Dlib_loss(loss), layers[-1]))
    return layers