def network_predict(image): image_to_predict = prepare_image(image) with graph.as_default(): prediction = network_model.predict(image_to_predict) label = decode_predictions(prediction) return label
def decode_predictions(*args, **kwargs): return vgg16.decode_predictions(*args, **kwargs)
https://colab.research.google.com/drive/1kLOtfIlx8gpJamwqZSXZiJ67Tz7f1Pah """ import tensorflow from keras_preprocessing.image import load_img, img_to_array from keras_applications.vgg16 import preprocess_input, decode_predictions, VGG16 model = VGG16() images = load_img("speaker.jpg", target_size=(224, 224)) img_array = img_to_array(images) img_array img_array = img_array.reshape( (1, img_array.shape[0], img_array.shape[1], img_array.shape[2])) img_array.shape image = preprocess_input(img_array) image img_pred = model.predict(image) d_img_pred = decode_predictions(img_pred) d_img_pred