def test_get_gradient(self):
     model = keras.applications.MobileNetV2()
     gradient_model = keras.models.Sequential()
     gradient_model.add(model)
     gradient_model.add(Categorical(7))
     gradient_model.get_config()
     get_gradient(gradient_model, np.random.random((1, 224, 224, 3)))
     get_gradient(gradient_model, np.random.random((1, 224, 224, 3)),
                  targets=model.get_layer('bn_Conv1').trainable_weights[0])
 def test_cut_model(self):
     model = keras.applications.MobileNetV2()
     head, tail = split_model_by_layer(model, 'block_5_add')
     gradient_model = keras.models.Sequential()
     gradient_model.add(tail)
     gradient_model.add(Categorical(7))
     gradients = get_gradient([head, gradient_model], np.random.random((1, 224, 224, 3)))
     self.assertEqual(2, len(gradients))
Пример #3
0
def process(relu_type, target_class):
    # Build model and get gradients
    model = keras.applications.MobileNetV2()
    if relu_type is not None:
        model = replace_relu(model, relu_type=relu_type)
    gradient_model = keras.models.Sequential()
    gradient_model.add(model)
    gradient_model.add(Categorical(target_class))
    gradients = get_gradient(gradient_model, inputs)

    # Visualize gradients
    gradient = gradients.numpy()[0]
    gradient = (gradient - np.min(gradient)) / (np.max(gradient) -
                                                np.min(gradient) + 1e-4)
    gradient = (gradient * 255.0).astype(np.uint8)
    return Image.fromarray(gradient)