Пример #1
0
def do_job(iter_num):
    model = get_model()
    x = [12345, 54321, 00000, 1111]
    y = [1, 1, 0, 0]
    model.fit(x=x,
              y=y,
              validation_split=0.5,
              epochs=10,
              shuffle=True,
              batch_size=2,
              verbose=2)
    print("Done process " + str(iter_num))
    clear_session()
    print("close")
Пример #2
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'], params['weakness'],
        int(params['cnn_3d']), job_id
    )
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], loader=False, loader2=False) # Change loader to True to enable transfer learning, Change loader2 to True to enable transfer learning with different labels
    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
    for epoch_cnt in range(nb_epoch):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            epochs=1,
            verbose=0
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            verbose=2
        )
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            epoch_metric_loss[epoch_cnt] = np.mean([
                sed_loss[epoch_cnt, 0],
                1-sed_loss[epoch_cnt, 1],
                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
            )
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)

        patience_cnt += 1
        if epoch_metric_loss[epoch_cnt] < best_metric:
            best_metric = epoch_metric_loss[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'error_metric: %.2f, best_error_metric: %.2f, best_epoch : %d' %
            (
                epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                epoch_metric_loss[epoch_cnt], best_metric, best_epoch
            )
        )
        if patience_cnt > params['patience']:
            break

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 1], sed_loss[best_epoch, 0]))
    print('unique_name: {} '.format(unique_name))
Пример #3
0
        data = file_list_to_data(files,
                                 msg="generate train_dataset",
                                 n_mels=param["feature"]["n_mels"],
                                 n_frames=param["feature"]["n_frames"],
                                 n_hop_frames=param["feature"]["n_hop_frames"],
                                 n_fft=param["feature"]["n_fft"],
                                 hop_length=param["feature"]["hop_length"],
                                 power=param["feature"]["power"])

        # number of vectors for each wave file
        n_vectors_ea_file = int(data.shape[0] / len(files))

        # train model
        print("============== MODEL TRAINING ==============")
        model = keras_model.get_model(param["feature"]["n_mels"] * param["feature"]["n_frames"],
                                      param["fit"]["lr"])

        model.summary()

        history = model.fit(x=data,
                            y=data,
                            epochs=param["fit"]["epochs"],
                            batch_size=param["fit"]["batch_size"],
                            shuffle=param["fit"]["shuffle"],
                            validation_split=param["fit"]["validation_split"],
                            verbose=param["fit"]["verbose"])

        # calculate y_pred for fitting anomaly score distribution
        y_pred = []
        start_idx = 0
        for file_idx in range(len(files)):
Пример #4
0
import numpy as np
import os
import argparse

import keras_model as models
import get_dataset as aww_data
import aww_util

num_classes = 12  # should probably draw this directly from the dataset.
# FLAGS = None

if __name__ == '__main__':
    Flags, unparsed = aww_util.parse_command()

    print('We will download data to {:}'.format(Flags.data_dir))
    print('We will train for {:} epochs'.format(Flags.epochs))
    ds_train, ds_test, ds_val = aww_data.get_training_data(Flags)
    print("Done getting data")
    model = models.get_model(model_name=Flags.model_architecture)
    model.summary()

    train_hist = model.fit(ds_train,
                           validation_data=ds_val,
                           epochs=Flags.epochs)
    model.save(Flags.saved_model_path)

    if Flags.run_test_set:
        test_scores = model.evaluate(ds_test)
        print("Test loss:", test_scores[0])
        print("Test accuracy:", test_scores[1])
Пример #5
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    print(argv)
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    feat_cls = cls_feature_class.FeatureClass(params)
    train_splits, val_splits, test_splits = None, None, None

    if params['mode'] == 'dev':
        test_splits = [6]
        val_splits = [5]
        train_splits = [[1, 2, 3, 4]]

    elif params['mode'] == 'eval':
        test_splits = [[7, 8]]
        val_splits = [[6]]
        train_splits = [[1, 2, 3, 4, 5]]

    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            params=params, split=train_splits[split_cnt])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            params=params,
            split=val_splits[split_cnt],
            shuffle=False,
            per_file=True,
            is_eval=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        nb_classes = data_gen_train.get_nb_classes()
        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n\tdoa_objective: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['f_pool_size'], params['t_pool_size'],
                    params['rnn_size'], params['fnn_size'],
                    params['doa_objective']))

        print('Using loss weights : {}'.format(params['loss_weights']))
        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      f_pool_size=params['f_pool_size'],
                                      t_pool_size=params['t_pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'],
                                      doa_objective=params['doa_objective'],
                                      is_accdoa=params['is_accdoa'])

        # Dump results in DCASE output format for calculating final scores
        dcase_output_val_folder = os.path.join(
            params['dcase_output_dir'],
            '{}_{}_{}_val'.format(task_id, params['dataset'], params['mode']))
        cls_feature_class.delete_and_create_folder(dcase_output_val_folder)
        print('Dumping recording-wise val results in: {}'.format(
            dcase_output_val_folder))

        # Initialize evaluation metric class
        score_obj = ComputeSELDResults(params)

        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
        tr_loss = np.zeros(nb_epoch)
        seld_metric = np.zeros((nb_epoch, 5))

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2,
            )
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]

            # predict once per epoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            if params['is_accdoa']:
                sed_pred, doa_pred = get_accdoa_labels(pred, nb_classes)
                sed_pred = reshape_3Dto2D(sed_pred)
                doa_pred = reshape_3Dto2D(doa_pred)
            else:
                sed_pred = reshape_3Dto2D(pred[0]) > 0.5
                doa_pred = reshape_3Dto2D(pred[1] if params['doa_objective'] is
                                          'mse' else pred[1][:, :,
                                                             nb_classes:])

            # Calculate the DCASE 2021 metrics - Location-aware detection and Class-aware localization scores
            dump_DCASE2021_results(data_gen_val, feat_cls,
                                   dcase_output_val_folder, sed_pred, doa_pred)
            seld_metric[epoch_cnt, :] = score_obj.get_SELD_Results(
                dcase_output_val_folder)

            patience_cnt += 1
            if seld_metric[epoch_cnt, -1] < best_seld_metric:
                best_seld_metric = seld_metric[epoch_cnt, -1]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: {}, time: {:0.2f}s, tr_loss: {:0.2f}, '
                '\n\t\t DCASE2021 SCORES: ER: {:0.2f}, F: {:0.1f}, LE: {:0.1f}, LR:{:0.1f}, seld_score (early stopping score): {:0.2f}, '
                'best_seld_score: {:0.2f}, best_epoch : {}\n'.format(
                    epoch_cnt,
                    time.time() - start, tr_loss[epoch_cnt],
                    seld_metric[epoch_cnt, 0], seld_metric[epoch_cnt, 1] * 100,
                    seld_metric[epoch_cnt, 2], seld_metric[epoch_cnt, 3] * 100,
                    seld_metric[epoch_cnt, -1], best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score (early stopping score) : {}'.format(
            best_seld_metric))

        print('\n\tDCASE2021 scores')
        print(
            '\tClass-aware localization scores: Localization Error: {:0.1f}, Localization Recall: {:0.1f}'
            .format(seld_metric[best_epoch, 2],
                    seld_metric[best_epoch, 3] * 100))
        print(
            '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
            .format(seld_metric[best_epoch, 0],
                    seld_metric[best_epoch, 1] * 100))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        print('\tLoading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            params=params,
            split=split,
            shuffle=False,
            per_file=True,
            is_eval=True if params['mode'] is 'eval' else False)

        model = keras_model.load_seld_model('{}_model.h5'.format(unique_name),
                                            params['doa_objective'])
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)
        if params['is_accdoa']:
            test_sed_pred, test_doa_pred = get_accdoa_labels(
                pred_test, nb_classes)
            test_sed_pred = reshape_3Dto2D(test_sed_pred)
            test_doa_pred = reshape_3Dto2D(test_doa_pred)
        else:
            test_sed_pred = reshape_3Dto2D(pred_test[0]) > 0.5
            test_doa_pred = reshape_3Dto2D(
                pred_test[1] if params['doa_objective'] is 'mse' else
                pred_test[1][:, :, nb_classes:])

        # Dump results in DCASE output format for calculating final scores
        dcase_output_test_folder = os.path.join(
            params['dcase_output_dir'],
            '{}_{}_{}_test'.format(task_id, params['dataset'], params['mode']))
        cls_feature_class.delete_and_create_folder(dcase_output_test_folder)
        print('Dumping recording-wise test results in: {}'.format(
            dcase_output_test_folder))
        dump_DCASE2021_results(data_gen_test, feat_cls,
                               dcase_output_test_folder, test_sed_pred,
                               test_doa_pred)

        if params['mode'] is 'dev':
            # Calculate DCASE2021 scores
            test_seld_metric = score_obj.get_SELD_Results(
                dcase_output_test_folder)

            print('Results on test split:')
            print('\tDCASE2021 Scores')
            print(
                '\tClass-aware localization scores: Localization Error: {:0.1f}, Localization Recall: {:0.1f}'
                .format(test_seld_metric[2], test_seld_metric[3] * 100))
            print(
                '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_seld_metric[0], test_seld_metric[1] * 100))
            print('\tSELD (early stopping metric): {:0.2f}'.format(
                test_seld_metric[-1]))
Пример #6
0
        # generate dataset
        print("============== DATASET_GENERATOR ==============")
        files = file_list_generator(target_dir)
        train_data = list_to_vector_array(
            files,
            msg="generate train_dataset",
            n_mels=param["feature"]["n_mels"],
            frames=param["feature"]["frames"],
            n_fft=param["feature"]["n_fft"],
            hop_length=param["feature"]["hop_length"],
            power=param["feature"]["power"])

        # train model
        print("============== MODEL TRAINING ==============")
        model = keras_model.get_model(param["feature"]["n_mels"] *
                                      param["feature"]["frames"])
        model.summary()

        model.compile(**param["fit"]["compile"])
        history = model.fit(train_data,
                            train_data,
                            epochs=param["fit"]["epochs"],
                            batch_size=param["fit"]["batch_size"],
                            shuffle=param["fit"]["shuffle"],
                            validation_split=param["fit"]["validation_split"],
                            verbose=param["fit"]["verbose"])

        visualizer.loss_plot(history.history["loss"],
                             history.history["val_loss"])
        visualizer.save_figure(history_img)
        model.save(model_file_path)
Пример #7
0
        # train model
        print("============== MODEL TRAINING ==============")

        # checkpoint
        model_checkpoint = ModelCheckpoint(best_model_filepath +
                                           "{epoch:02d}.hdf5",
                                           monitor='val_loss',
                                           verbose=1,
                                           save_best_only=True)
        early = EarlyStopping(monitor='val_loss',
                              mode='min',
                              patience=10,
                              min_delta=0.0001)

        # create model
        model = keras_model.get_model((shape0_feat, shape1_feat),
                                      param["autoencoder"]["latentDim"])
        model.summary()

        #train model
        model.compile(**param["fit"]["compile"])
        history = model.fit_generator(gen_train,
                                      validation_data=gen_val,
                                      epochs=param["fit"]["epochs"],
                                      verbose=param["fit"]["verbose"],
                                      callbacks=[model_checkpoint, early])

        visualizer.loss_plot(history.history["loss"],
                             history.history["val_loss"])
        visualizer.save_figure(history_img)
        model.save(model_file_path)
        com.logger.info("save_model -> {}".format(model_file_path))
Пример #8
0
num_classes = 12  # should probably draw this directly from the dataset.
# FLAGS = None

if __name__ == '__main__':
    Flags, unparsed = kws_util.parse_command()

    print('We will download data to {:}'.format(Flags.data_dir))

    ds_train, ds_test, ds_val = kws_data.get_training_data(Flags)
    print("Done getting data")

    if Flags.model_init_path is None:
        print(
            "Starting with untrained model. Accuracy will be random-guess level at best."
        )
        model = models.get_model(args=Flags)
    else:
        print(f"Starting with pre-trained model from {Flags.model_init_path}")
        model = keras.models.load_model(Flags.model_init_path)

        model.summary()

    test_scores = model.evaluate(ds_test, return_dict=True)
    print("Test loss:", test_scores['loss'])
    print("Test accuracy:", test_scores['sparse_categorical_accuracy'])

    outputs = np.zeros((0, num_classes))
    labels = np.array([])
    for samples, batch_labels in ds_test:
        outputs = np.vstack((outputs, model.predict(samples)))
        labels = np.hstack((labels, batch_labels))
Пример #9
0
def main(args):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """

    # use parameter set defined by user
    task_id = args.params
    params = parameter.get_params(task_id)

    job_id = args.model_name

    model_dir = 'models/' + args.author + '/' if args.author != "" else 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)

    model_name = unique_name

    epoch_manager = JSON_Manager(args.author, unique_name)
    logdir = "logs/" + args.author + "/" + unique_name

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    session = tf.InteractiveSession()

    file_writer = tf.summary.FileWriter(logdir, session.graph)

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    model = keras_model.get_model(data_in=data_in,
                                  data_out=data_out,
                                  dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                  pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'],
                                  fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'],
                                  weights=params['loss_weights'])

    initial = epoch_manager.get_epoch()
    if initial != 0:
        print(f"Resume training from epoch {initial}")
        print("Loading already trained model...")
        # In order to load custom layers we need to link the references to the custom objects
        model = load_model(os.path.join(model_dir, model_name + "_model.h5"),
                           custom_objects={
                               'QuaternionConv2D': QuaternionConv2D,
                               'QuaternionGRU': QuaternionGRU,
                               'QuaternionDense': QuaternionDense
                           })

    best_metric = epoch_manager.get_best_metric()
    best_std = epoch_manager.get_best_std()
    conf_mat = None
    best_conf_mat = epoch_manager.get_best_conf_mat()
    best_epoch = epoch_manager.get_best_epoch()
    patience_cnt = epoch_manager.get_patience_cnt()
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    std_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    time_hold = tf.placeholder(tf.float32, shape=None, name='time_summary')
    time_summ = tf.summary.scalar('time', time_hold)

    tr_loss_hold = tf.placeholder(tf.float32,
                                  shape=None,
                                  name='tr_loss_summary')
    tr_loss_summ = tf.summary.scalar('tr_loss', tr_loss_hold)

    val_loss_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='val_loss_summary')
    val_loss_summ = tf.summary.scalar('val_loss', val_loss_hold)

    f1_hold = tf.placeholder(tf.float32, shape=None, name='f1_summary')
    f1_summ = tf.summary.scalar('F1_overall', f1_hold)

    er_hold = tf.placeholder(tf.float32, shape=None, name='er_summary')
    er_summ = tf.summary.scalar('ER_overall', er_hold)

    doa_error_gt_hold = tf.placeholder(tf.float32,
                                       shape=None,
                                       name='doa_error_gt_summary')
    doa_error_gt_summ = tf.summary.scalar('doa_error_gt', doa_error_gt_hold)

    doa_error_pred_hold = tf.placeholder(tf.float32,
                                         shape=None,
                                         name='doa_error_pred_summary')
    doa_error_pred_summ = tf.summary.scalar('doa_error_pred',
                                            doa_error_pred_hold)

    good_pks_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='good_pks_summary')
    good_pks_summ = tf.summary.scalar('good_pks_ratio', good_pks_hold)

    sed_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='sed_score_summary')
    sed_score_summ = tf.summary.scalar('sed_score', sed_score_hold)

    doa_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='doa_score_summary')
    doa_score_summ = tf.summary.scalar('doa_score', doa_score_hold)

    seld_score_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='seld_score_summary')
    seld_score_summ = tf.summary.scalar('seld_score', seld_score_hold)

    std_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='std_score_summary')
    std_score_summ = tf.summary.scalar('std_score', std_score_hold)

    best_error_metric_hold = tf.placeholder(tf.float32,
                                            shape=None,
                                            name='best_error_metric_summary')
    best_error_metric_summ = tf.summary.scalar('best_error_metric',
                                               best_error_metric_hold)

    best_epoch_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='best_epoch_summary')
    best_epoch_summ = tf.summary.scalar('best_epoch', best_epoch_hold)

    best_std_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='best_std_summary')
    best_std_summ = tf.summary.scalar('best_std', best_std_hold)

    merged = tf.summary.merge_all()

    for epoch_cnt in range(initial, params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])
            seld_score[epoch_cnt] = np.mean(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

            # standard deviation
            std_score[epoch_cnt] = np.std(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        epoch_manager.increase_patience_cnt()

        model.save('{}_model.h5'.format(unique_name))

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            epoch_manager.set_best_metric(best_metric)

            best_std = std_score[epoch_cnt]
            epoch_manager.set_best_std(best_std)

            best_conf_mat = conf_mat
            epoch_manager.set_best_conf_mat(conf_mat)

            best_epoch = epoch_cnt
            epoch_manager.set_best_epoch(best_epoch)

            model.save('{}_best_model.h5'.format(unique_name))
            patience_cnt = 0
            epoch_manager.reset_patience_cnt()

        if patience_cnt > params['patience']:
            print(
                f"\n----  PATIENCE TRIGGERED AFTER {epoch_cnt} EPOCHS  ----\n")
            break

        summary = session.run(merged,
                              feed_dict={
                                  time_hold:
                                  time.time() - start,
                                  tr_loss_hold:
                                  tr_loss[epoch_cnt],
                                  val_loss_hold:
                                  val_loss[epoch_cnt],
                                  f1_hold:
                                  sed_loss[epoch_cnt, 1],
                                  er_hold:
                                  sed_loss[epoch_cnt, 0],
                                  doa_error_gt_hold:
                                  doa_loss[epoch_cnt, 1],
                                  doa_error_pred_hold:
                                  doa_loss[epoch_cnt, 2],
                                  good_pks_hold:
                                  doa_loss[epoch_cnt, 5] /
                                  float(sed_gt.shape[0]),
                                  sed_score_hold:
                                  sed_score[epoch_cnt],
                                  doa_score_hold:
                                  doa_score[epoch_cnt],
                                  seld_score_hold:
                                  seld_score[epoch_cnt],
                                  std_score_hold:
                                  std_score[epoch_cnt],
                                  best_error_metric_hold:
                                  best_metric,
                                  best_epoch_hold:
                                  best_epoch,
                                  best_std_hold:
                                  best_std
                              })
        file_writer.add_summary(summary, epoch_cnt)

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d, best_std: %.2f'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch, best_std))
        epoch_manager.increase_epoch()
    lower_confidence, upper_confidence = evaluation_metrics.compute_confidence_interval(
        best_metric, best_std, params['nb_epochs'],
        confid_coeff=1.96)  # 1.96 for a 95% CI

    print("\n----  FINISHED TRAINING  ----\n")

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('Confidence Interval: lower_interval: {}, upper_inteval: {}'.format(
        lower_confidence, upper_confidence))
    print('unique_name: {} '.format(unique_name))
Пример #10
0
        # set path
        machine_type = os.path.split(target_dir)[1]
        model_file_path = "{model}/model_{machine_type}.hdf5".format(model=param["model_directory"],

                                                                     machine_type=machine_type)
        history_img = "{model}/history_{machine_type}.png".format(model=param["model_directory"],
                                                                  machine_type=machine_type)

        if os.path.exists(model_file_path):
            com.logger.info("model exists")
            continue

        # train model
        print("============== MODEL CREATING ==============")
        model = keras_model.get_model(param['feature']['n_mels'] * param["feature"]["frames"])
        model.summary()

        model.compile(**param["fit"]["compile"])
        # generate dataset

        for method_augm in param['feature']['augmentation']:
            print("============== DATASET_", method_augm, "_GENERATOR ==============")
            files = file_list_generator(target_dir)[:3000]
            train_data = list_to_vector_array(files,
                                              msg="generate train_dataset",
                                              n_mels=param["feature"]["n_mels"],
                                              frames=param["feature"]["frames"],
                                              n_fft=param["feature"]["n_fft"],
                                              hop_length=param["feature"]["hop_length"],
                                              power=param["feature"]["power"],
Пример #11
0
        train_data = list_to_vector_array(
            files,
            False,
            msg="generate train_dataset",
            n_mels=param["feature"]["n_mels"],
            frames=param["feature"]["frames"],
            n_fft=param["feature"]["n_fft"],
            hop_length=param["feature"]["hop_length"],
            power=param["feature"]["power"])

        print("============== MODEL TRAINING ==============")

        ## Load pre-trained model
        # model = keras_model.get_model(param["feature"]["n_mels"] * param["feature"]["frames"])
        # model = keras.models.load_model("../dcase2020_task2_baseline/{model}/model_{machine_type}.hdf5".format(model=param["model_directory"], machine_type=machine_type))
        model = keras_model.get_model(100)
        #  model.summary()

        model.compile(**param["fit"]["compile"])
        # model.compile(**param["fit"]["compile"])
        history = model.fit(train_data,
                            train_data,
                            epochs=100,
                            batch_size=param["fit"]["batch_size"],
                            shuffle=param["fit"]["shuffle"],
                            validation_split=param["fit"]["validation_split"],
                            verbose=param["fit"]["verbose"])

        visualizer.loss_plot(history.history["loss"],
                             history.history["val_loss"])
        visualizer.save_figure(history_img)
Пример #12
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    # TPU CODE FOR GOOGLE COLABORATORY
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
    tf.config.experimental_connect_to_cluster(resolver)
    # This is the TPU initialization code that has to be at the beginning.
    tf.tpu.experimental.initialize_tpu_system(resolver)
    print("All devices: ", tf.config.list_logical_devices('TPU'))

    strategy = tf.distribute.experimental.TPUStrategy(resolver)

    with strategy.scope():
        # Load or create model
        model = utils.load_model(unique_name)
        if model is None:
            model = keras_model.get_model(
                data_in=data_in,
                data_out=data_out,
                dropout_rate=params['dropout_rate'],
                nb_cnn2d_filt=params['nb_cnn2d_filt'],
                pool_size=params['pool_size'],
                rnn_size=params['rnn_size'],
                fnn_size=params['fnn_size'],
                classification_mode=params['mode'],
                weights=params['loss_weights'])
        model.summary()

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)


#            epoch_metric_loss[epoch_cnt] = np.mean([
#                sed_loss[epoch_cnt, 0],
#                1-sed_loss[epoch_cnt, 1],
#                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
#                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
#            )
            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])

        #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        #        if epoch_metric_loss[epoch_cnt] < best_metric:
        #            best_metric = epoch_metric_loss[epoch_cnt]
        #            best_conf_mat = conf_mat
        #            best_epoch = epoch_cnt
        #            model.save('{}_model.h5'.format(unique_name))
        #            patience_cnt = 0
        if sed_score[epoch_cnt] < best_metric:
            best_metric = sed_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch))

    #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))
Пример #13
0
def main(params, network_params):
    print(
        '\n\n----------------------------------------------------------------------------------------------------'
    )
    print(
        '----------------------------------- Splitting data into {:0>2d} folds -----------------------------------'
        .format(params['nb_folds']))
    print(
        '----------------------------------------------------------------------------------------------------'
    )
    evaluation_cls = evaluation_metrics(results_dir=params['results_dir'],
                                        win_len=params['win_len'],
                                        hop_len=params['hop_len'],
                                        seq_len=params['seq_len'],
                                        seq_hop_len=params['seq_hop_len'],
                                        nb_channels=params['nb_channels'],
                                        nb_classes=params['nb_classes'],
                                        silent=True)
    data_splitter_cls = data_splitter(data_dir=params['data_dir'],
                                      win_len=params['win_len'],
                                      hop_len=params['hop_len'],
                                      seq_len=params['seq_len'],
                                      seq_hop_len=params['seq_hop_len'],
                                      nb_channels=params['nb_channels'],
                                      nb_classes=params['nb_classes'],
                                      validate=False,
                                      nb_folds=params['nb_folds'],
                                      silent=True)
    data_splitter_cls.perform()
    Path(os.path.join(params['log_dir'])).mkdir(parents=True, exist_ok=True)
    Path(os.path.join(params['results_dir'])).mkdir(parents=True,
                                                    exist_ok=True)
    for fold_cnt in range(params['nb_folds']):
        print(
            '\n\n----------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------------    fold: {:0>2d}    ------------------------------------------'
            .format(fold_cnt + 1))
        print(
            '----------------------------------------------------------------------------------------------------'
        )
        model_name = os.path.join(params['log_dir'],
                                  'fold_{}_best_model.h5'.format(fold_cnt + 1))
        csv_logger = CSVLogger(filename=os.path.join(
            params['log_dir'], 'fold_{}_log.csv'.format(fold_cnt + 1)))
        early_stopper = EarlyStopping(monitor='loss', min_delta=0, mode='min')
        data_splitter_cls.prepare(fold_n=fold_cnt, run_type='train')
        data_splitter_cls.prepare(fold_n=fold_cnt, run_type='val')
        data_splitter_cls.prepare(fold_n=fold_cnt, run_type='test')
        print('Loading training dataset:')
        train_data_gen = DataGenerator(data_dir=params['data_dir'],
                                       shuffle=False,
                                       win_len=params['win_len'],
                                       hop_len=params['hop_len'],
                                       seq_len=params['seq_len'],
                                       seq_hop_len=params['seq_hop_len'],
                                       nb_channels=params['nb_channels'],
                                       nb_classes=params['nb_classes'],
                                       n_fold=fold_cnt,
                                       batch_size=params['batch_size'],
                                       run_type='train')
        val_data_gen = DataGenerator(data_dir=params['data_dir'],
                                     shuffle=False,
                                     win_len=params['win_len'],
                                     hop_len=params['hop_len'],
                                     seq_len=params['seq_len'],
                                     seq_hop_len=params['seq_hop_len'],
                                     nb_channels=params['nb_channels'],
                                     nb_classes=params['nb_classes'],
                                     n_fold=fold_cnt,
                                     batch_size=params['batch_size'],
                                     run_type='val')
        test_data_gen = DataGenerator(data_dir=params['data_dir'],
                                      shuffle=False,
                                      win_len=params['win_len'],
                                      hop_len=params['hop_len'],
                                      seq_len=params['seq_len'],
                                      seq_hop_len=params['seq_hop_len'],
                                      nb_channels=params['nb_channels'],
                                      nb_classes=params['nb_classes'],
                                      n_fold=fold_cnt,
                                      batch_size=params['batch_size'],
                                      run_type='test')
        model = get_model(params, network_params)
        #for epoch_cnt in range(params['nb_epochs']):
        #print('Epoch No. {}'.format(epoch_cnt+1))
        hist = model.fit(x=train_data_gen,
                         validation_data=val_data_gen,
                         epochs=params['nb_epochs'],
                         workers=10,
                         use_multiprocessing=True,
                         callbacks=[csv_logger])  #early_stopper,csv_logger])
        model.save(model_name)

        print(
            '\nLoading the best model and predicting results on the testing data'
        )
        model = load_model(model_name)
        pred_test = model.predict(x=test_data_gen,
                                  workers=2,
                                  use_multiprocessing=False)
        pred_test_logits = pred_test
        pred_test = pred_test > 0.5
        test_data_records = pd.read_csv(
            os.path.join(
                test_data_gen._data_dir, 'folds_metadata',
                '{}_metadata_{}.csv'.format(test_data_gen._run_type,
                                            fold_cnt + 1)))
        test_h5 = h5py.File(
            os.path.join(test_data_gen._data_dir, 'folds_h5',
                         '{}_metadata_{}.hdf5'.format('test', fold_cnt + 1)))
        ref_test = np.asarray(test_h5['seq_labels'])
        test_h5.close()
        Path(
            os.path.join(params['results_dir'],
                         'test_val_fold{:0>2d}'.format(fold_cnt + 1))).mkdir(
                             parents=True, exist_ok=True)
        Path(
            os.path.join(
                params['results_dir'],
                'test_val_logits_fold{:0>2d}'.format(fold_cnt + 1))).mkdir(
                    parents=True, exist_ok=True)
        Path(
            os.path.join(params['results_dir'],
                         'ref_val_fold{:0>2d}'.format(fold_cnt + 1))).mkdir(
                             parents=True, exist_ok=True)
        evaluation_cls.combine_seqlogits(pred_test,
                                         test_data_records,
                                         run_type='test',
                                         fold_n=fold_cnt)
        evaluation_cls.combine_seqlogits(ref_test,
                                         test_data_records,
                                         run_type='ref',
                                         fold_n=fold_cnt)
        evaluation_cls.combine_seqlogitspro(pred_test_logits,
                                            test_data_records,
                                            fold_n=fold_cnt)
        nb_test_files = os.listdir(
            os.path.join(params['results_dir'],
                         'test_val_fold{:0>2d}'.format(fold_cnt + 1)))
        acc = np.zeros((len(nb_test_files), 1))
        sens = np.zeros((len(nb_test_files), 1))
        spec = np.zeros((len(nb_test_files), 1))
        fold_clogits = []
        fold_cgtruth = []
        print('Model evaluation for fold#{}:'.format(fold_cnt + 1))
        for testfile_cnt, testfile in enumerate(nb_test_files):
            print('Evaluating segmentation of file# {}: {}'.format(
                testfile_cnt + 1, testfile))
            acc[testfile_cnt], sens[testfile_cnt], spec[
                testfile_cnt] = evaluation_cls.evaluate_sequences(
                    np.load(
                        os.path.join(
                            params['results_dir'],
                            'ref_val_fold{:0>2d}'.format(fold_cnt + 1),
                            testfile)),
                    np.load(
                        os.path.join(
                            params['results_dir'],
                            'test_val_fold{:0>2d}'.format(fold_cnt + 1),
                            testfile)))
            fold_clogits = np.concatenate(
                (fold_clogits,
                 np.load(
                     os.path.join(
                         params['results_dir'],
                         'test_val_logits_fold{:0>2d}'.format(fold_cnt + 1),
                         testfile))))
            fold_cgtruth = np.concatenate(
                (fold_cgtruth,
                 np.load(
                     os.path.join(params['results_dir'],
                                  'ref_val_fold{:0>2d}'.format(fold_cnt + 1),
                                  testfile))))
        np.save(
            os.path.join(
                params['results_dir'],
                'fold_{:0>2d}_aggregate_logits.npy'.format(fold_cnt + 1)),
            fold_clogits)
        np.save(
            os.path.join(
                params['results_dir'],
                'fold_{:0>2d}_aggregate_gtruth.npy'.format(fold_cnt + 1)),
            fold_cgtruth)
        np.save(
            os.path.join(params['results_dir'],
                         'fold_{:0>2d}_qmeasures_acc.npy'.format(fold_cnt +
                                                                 1)), acc)
        np.save(
            os.path.join(
                params['results_dir'],
                'fold_{:0>2d}_qmeasures_sens.npy'.format(fold_cnt + 1)), sens)
        np.save(
            os.path.join(
                params['results_dir'],
                'fold_{:0>2d}_qmeasures_spec.npy'.format(fold_cnt + 1)), spec)
Пример #14
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'], params['sequence_length'])
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    # Cycling over overlaps
    for ov in range(1, params['overlap']+1):

        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'], ov=params['overlap'], ov_num=ov, split=params['test_split'], db=params['db'], nfft=params['nfft'],
            batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
            weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
            azi_only=params['azi_only'], shuffle=False
        )

        data_in, data_out = data_gen_test.get_data_sizes()
        n_classes = data_out[0][2]

        print(
            'FEATURES:\n'
            '\tdata_in: {}\n'
            '\tdata_out: {}\n'.format(
                data_in, data_out
            )
        )

        gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        print("#### Saving DOA and SED GT Values ####")
        f = open("models/doa_gt.txt", "w+")
        for elem in doa_gt:
          f.write(str(list(elem)) + "\n")
        f.close()

        f = open("models/sed_gt.txt", "w+")
        for elem in sed_gt:
          f.write(str(elem)+"\n")
        f.close()
        print("######################################")

        print(
            'MODEL:\n'
            '\tdropout_rate: {}\n'
            '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
            '\trnn_size: {}, fnn_size: {}\n'.format(
                params['dropout_rate'],
                params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
                params['rnn_size'], params['fnn_size']
            )
        )

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                        nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                        rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                        classification_mode=params['mode'], weights=params['loss_weights'], summary=False)

        if(os.path.exists('{}_model.ckpt'.format(unique_name))):
            print("Model found!")
            model.load_weights('{}_model.ckpt'.format(unique_name))
            for i in range(10):
                print("###")

        sed_score = np.zeros(params['nb_epochs'])
        doa_score = np.zeros(params['nb_epochs'])
        seld_score = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        val_loss = np.zeros(params['nb_epochs'])
        doa_loss = np.zeros((params['nb_epochs'], 6))
        sed_loss = np.zeros((params['nb_epochs'], 2))

        epoch_cnt = 0
        start = time.time()

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1,
        )
        print("##########################")
        #print("pred:", pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            print("#### Saving DOA and SED Pred Values ####")
            f = open("models/doa_pred.txt", "w+")
            for elem in doa_pred:
              f.write(str(list(elem)) + "\n")
            f.close()

            f = open("models/sed_pred.txt", "w+")
            for elem in sed_pred:
              f.write(str(elem)+"\n")
            f.close()
            print("########################################")

            # Old version of confidence intervals
            '''
            # Computing confidence intervals
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %f, %f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %f" % (doa_conf_up - doa_median))
            # ------------------------------
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

            # New confidence computation, differing doa and sed errors
            sed_err = sed_loss[epoch_cnt, 0]
            [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

            doa_err = doa_gt - doa_pred
            [x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)


            print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
                'F1_overall: %.2f, ER_overall: %.2f, '
                'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f' %
                (
                    epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                    sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                    doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                    sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt]
                )
            )

        simple_plotter.plot_3d("models/doa_gt.txt", "models/doa_pred.txt", 0, 11, 200)
        simple_plotter.plot_confidence(x_err, y_err, z_err, "ov"+str(ov))
Пример #15
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    train_splits, val_splits, test_splits = None, None, None
    if params['mode'] == 'dev':
        test_splits = [1, 2, 3, 4]
        val_splits = [2, 3, 4, 1]
        train_splits = [[3, 4], [4, 1], [1, 2], [2, 3]]

        # SUGGESTION: Considering the long training time, major tuning of the method can be done on the first split.
        # Once you finlaize the method you can evaluate its performance on the complete cross-validation splits
        # test_splits = [1]
        # val_splits = [2]
        # train_splits = [[3, 4]]

    elif params['mode'] == 'eval':
        test_splits = [0]
        val_splits = [1]
        train_splits = [[2, 3, 4]]

    avg_scores_val = []
    avg_scores_test = []
    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=train_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=val_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'],
            shuffle=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        gt = collect_test_labels(data_gen_val, data_out, params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        # rescaling the reference elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
        nb_classes = data_gen_train.get_nb_classes()
        def_elevation = data_gen_train.get_default_elevation()
        doa_gt[:,
               nb_classes:] = doa_gt[:, nb_classes:] / (180. / def_elevation)

        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, pool_size{}\n\trnn_size: {}, fnn_size: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['pool_size'], params['rnn_size'],
                    params['fnn_size']))

        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'])
        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        seld_metric = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        val_loss = np.zeros(params['nb_epochs'])
        doa_metric = np.zeros((params['nb_epochs'], 6))
        sed_metric = np.zeros((params['nb_epochs'], 2))
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                validation_data=data_gen_val.generate(),
                validation_steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2)
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
            val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

            # predict once per peoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            # Calculate the metrics
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            # rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
            doa_pred[:,
                     nb_classes:] = doa_pred[:, nb_classes:] / (180. /
                                                                def_elevation)

            sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_val.nb_frames_1s())
            doa_metric[
                epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr(
                    doa_pred, doa_gt, sed_pred, sed_gt)
            seld_metric[epoch_cnt] = evaluation_metrics.compute_seld_metric(
                sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :])

            # Visualize the metrics with respect to epochs
            plot_functions(unique_name, tr_loss, val_loss, sed_metric,
                           doa_metric, seld_metric)

            patience_cnt += 1
            if seld_metric[epoch_cnt] < best_seld_metric:
                best_seld_metric = seld_metric[epoch_cnt]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
                'ER_overall: %.2f, F1_overall: %.2f, '
                'doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'seld_score: %.2f, best_seld_score: %.2f, best_epoch : %d\n' %
                (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
                 val_loss[epoch_cnt], sed_metric[epoch_cnt,
                                                 0], sed_metric[epoch_cnt, 1],
                 doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1],
                 seld_metric[epoch_cnt], best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        avg_scores_val.append([
            sed_metric[best_epoch, 0], sed_metric[best_epoch, 1],
            doa_metric[best_epoch, 0], doa_metric[best_epoch,
                                                  1], best_seld_metric
        ])
        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score: {}'.format(best_seld_metric))
        print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(
            doa_metric[best_epoch, 0], doa_metric[best_epoch, 1]))
        print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
            sed_metric[best_epoch, 0], sed_metric[best_epoch, 1]))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print('Loading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=split,
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'],
            shuffle=False,
            per_file=params['dcase_output'],
            is_eval=True if params['mode'] is 'eval' else False)

        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        model = load_model('{}_model.h5'.format(unique_name))
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)

        test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
        test_doa_pred = evaluation_metrics.reshape_3Dto2D(pred_test[1])

        # rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
        test_doa_pred[:, nb_classes:] = test_doa_pred[:, nb_classes:] / (
            180. / def_elevation)

        if params['dcase_output']:
            # Dump results in DCASE output format for calculating final scores
            dcase_dump_folder = os.path.join(
                params['dcase_dir'],
                '{}_{}_{}'.format(task_id, params['dataset'], params['mode']))
            cls_feature_class.create_folder(dcase_dump_folder)
            print('Dumping recording-wise results in: {}'.format(
                dcase_dump_folder))

            test_filelist = data_gen_test.get_filelist()
            # Number of frames for a 60 second audio with 20ms hop length = 3000 frames
            max_frames_with_content = data_gen_test.get_nb_frames()

            # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
            # zero padding in the remaining frames
            frames_per_file = data_gen_test.get_frame_per_file()

            for file_cnt in range(test_sed_pred.shape[0] // frames_per_file):
                output_file = os.path.join(
                    dcase_dump_folder,
                    test_filelist[file_cnt].replace('.npy', '.csv'))
                dc = file_cnt * frames_per_file
                output_dict = evaluation_metrics.regression_label_format_to_output_format(
                    data_gen_test,
                    test_sed_pred[dc:dc + max_frames_with_content, :],
                    test_doa_pred[dc:dc + max_frames_with_content, :] * 180 /
                    np.pi)
                evaluation_metrics.write_output_format_file(
                    output_file, output_dict)

        if params['mode'] is 'dev':
            test_data_in, test_data_out = data_gen_test.get_data_sizes()
            test_gt = collect_test_labels(data_gen_test, test_data_out,
                                          params['quick_test'])
            test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
            test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])
            # rescaling the reference elevation from [-180 180] to [-def_elevation def_elevation] for scoring purpose
            test_doa_gt[:, nb_classes:] = test_doa_gt[:, nb_classes:] / (
                180. / def_elevation)

            test_sed_loss = evaluation_metrics.compute_sed_scores(
                test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
            test_doa_loss = evaluation_metrics.compute_doa_scores_regr(
                test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
            test_metric_loss = evaluation_metrics.compute_seld_metric(
                test_sed_loss, test_doa_loss)

            avg_scores_test.append([
                test_sed_loss[0], test_sed_loss[1], test_doa_loss[0],
                test_doa_loss[1], test_metric_loss
            ])
            print('Results on test split:')
            print('\tSELD_score: {},  '.format(test_metric_loss))
            print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(
                test_doa_loss[0], test_doa_loss[1]))
            print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
                test_sed_loss[0], test_sed_loss[1]))

    print('\n\nValidation split scores per fold:\n')
    for cnt in range(len(val_splits)):
        print(
            '\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'
            .format(cnt, avg_scores_val[cnt][0], avg_scores_val[cnt][1],
                    avg_scores_val[cnt][2], avg_scores_val[cnt][3],
                    avg_scores_val[cnt][4]))

    if params['mode'] is 'dev':
        print('\n\nTesting split scores per fold:\n')
        for cnt in range(len(val_splits)):
            print(
                '\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'
                .format(cnt, avg_scores_test[cnt][0], avg_scores_test[cnt][1],
                        avg_scores_test[cnt][2], avg_scores_test[cnt][3],
                        avg_scores_test[cnt][4]))
Пример #16
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    print(argv)
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    feat_cls = cls_feature_class.FeatureClass(params)
    train_splits, val_splits, test_splits = None, None, None

    if params['mode'] == 'dev':
        test_splits = [1]
        val_splits = [2]
        train_splits = [[3, 4, 5, 6]]

    elif params['mode'] == 'eval':
        test_splits = [[7, 8]]
        val_splits = [[1]]
        train_splits = [[2, 3, 4, 5, 6]]

    avg_scores_val = []
    avg_scores_test = []
    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            params=params, split=train_splits[split_cnt])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            params=params, split=val_splits[split_cnt], shuffle=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        nb_classes = data_gen_train.get_nb_classes()
        gt = collect_test_labels(data_gen_val, data_out, nb_classes,
                                 params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n\tdoa_objective: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['f_pool_size'], params['t_pool_size'],
                    params['rnn_size'], params['fnn_size'],
                    params['doa_objective']))

        print('Using loss weights : {}'.format(params['loss_weights']))
        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      f_pool_size=params['f_pool_size'],
                                      t_pool_size=params['t_pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'],
                                      doa_objective=params['doa_objective'])
        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
        seld_metric = np.zeros(nb_epoch)
        new_seld_metric = np.zeros(nb_epoch)
        tr_loss = np.zeros(nb_epoch)
        doa_metric = np.zeros((nb_epoch, 6))
        sed_metric = np.zeros((nb_epoch, 2))
        new_metric = np.zeros((nb_epoch, 4))

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2,
            )
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]

            # predict once per peoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(
                pred[1]
                if params['doa_objective'] is 'mse' else pred[1][:, :,
                                                                 nb_classes:])

            # Calculate the DCASE 2019 metrics - Detection-only and Localization-only scores
            sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_val.nb_frames_1s())
            doa_metric[
                epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr_xyz(
                    doa_pred, doa_gt, sed_pred, sed_gt)
            seld_metric[epoch_cnt] = evaluation_metrics.early_stopping_metric(
                sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :])

            # Calculate the DCASE 2020 metrics - Location-aware detection and Class-aware localization scores
            cls_new_metric = SELD_evaluation_metrics.SELDMetrics(
                nb_classes=data_gen_val.get_nb_classes(),
                doa_threshold=params['lad_doa_thresh'])
            pred_dict = feat_cls.regression_label_format_to_output_format(
                sed_pred, doa_pred)
            gt_dict = feat_cls.regression_label_format_to_output_format(
                sed_gt, doa_gt)

            pred_blocks_dict = feat_cls.segment_labels(pred_dict,
                                                       sed_pred.shape[0])
            gt_blocks_dict = feat_cls.segment_labels(gt_dict, sed_gt.shape[0])

            cls_new_metric.update_seld_scores_xyz(pred_blocks_dict,
                                                  gt_blocks_dict)
            new_metric[epoch_cnt, :] = cls_new_metric.compute_seld_scores()
            new_seld_metric[
                epoch_cnt] = evaluation_metrics.early_stopping_metric(
                    new_metric[epoch_cnt, :2], new_metric[epoch_cnt, 2:])

            # Visualize the metrics with respect to epochs
            plot_functions(unique_name, tr_loss, sed_metric, doa_metric,
                           seld_metric, new_metric, new_seld_metric)

            patience_cnt += 1
            if new_seld_metric[epoch_cnt] < best_seld_metric:
                best_seld_metric = new_seld_metric[epoch_cnt]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: {}, time: {:0.2f}s, tr_loss: {:0.2f}, '
                '\n\t\t DCASE2019 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, FR:{:0.1f}, seld_score: {:0.2f}, '
                '\n\t\t DCASE2020 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, DE_F:{:0.1f}, seld_score (early stopping score): {:0.2f}, '
                'best_seld_score: {:0.2f}, best_epoch : {}\n'.format(
                    epoch_cnt,
                    time.time() - start, tr_loss[epoch_cnt],
                    sed_metric[epoch_cnt, 0], sed_metric[epoch_cnt, 1] * 100,
                    doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1] * 100,
                    seld_metric[epoch_cnt], new_metric[epoch_cnt, 0],
                    new_metric[epoch_cnt, 1] * 100, new_metric[epoch_cnt, 2],
                    new_metric[epoch_cnt, 3] * 100, new_seld_metric[epoch_cnt],
                    best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        avg_scores_val.append([
            new_metric[best_epoch, 0], new_metric[best_epoch, 1],
            new_metric[best_epoch, 2], new_metric[best_epoch,
                                                  3], best_seld_metric
        ])
        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score (early stopping score) : {}'.format(
            best_seld_metric))

        print('\n\tDCASE2020 scores')
        print(
            '\tClass-aware localization scores: DOA_error: {:0.1f}, F-score: {:0.1f}'
            .format(new_metric[best_epoch, 2],
                    new_metric[best_epoch, 3] * 100))
        print(
            '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
            .format(new_metric[best_epoch, 0],
                    new_metric[best_epoch, 1] * 100))

        print('\n\tDCASE2019 scores')
        print(
            '\tLocalization-only scores: DOA_error: {:0.1f}, Frame recall: {:0.1f}'
            .format(doa_metric[best_epoch, 0],
                    doa_metric[best_epoch, 1] * 100))
        print(
            '\tDetection-only scores: Error rate: {:0.2f}, F-score: {:0.1f}\n'.
            format(sed_metric[best_epoch, 0], sed_metric[best_epoch, 1] * 100))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        print('\tLoading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            params=params,
            split=split,
            shuffle=False,
            per_file=params['dcase_output'],
            is_eval=True if params['mode'] is 'eval' else False)

        model = keras_model.load_seld_model('{}_model.h5'.format(unique_name),
                                            params['doa_objective'])
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)

        test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
        test_doa_pred = evaluation_metrics.reshape_3Dto2D(
            pred_test[1]
            if params['doa_objective'] is 'mse' else pred_test[1][:, :,
                                                                  nb_classes:])

        if params['dcase_output']:
            # Dump results in DCASE output format for calculating final scores
            dcase_dump_folder = os.path.join(
                params['dcase_dir'],
                '{}_{}_{}'.format(task_id, params['dataset'], params['mode']))
            cls_feature_class.create_folder(dcase_dump_folder)
            print('Dumping recording-wise results in: {}'.format(
                dcase_dump_folder))

            test_filelist = data_gen_test.get_filelist()
            # Number of frames for a 60 second audio with 20ms hop length = 3000 frames
            max_frames_with_content = data_gen_test.get_nb_frames()

            # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
            # zero padding in the remaining frames
            frames_per_file = data_gen_test.get_frame_per_file()

            for file_cnt in range(test_sed_pred.shape[0] // frames_per_file):
                output_file = os.path.join(
                    dcase_dump_folder,
                    test_filelist[file_cnt].replace('.npy', '.csv'))
                dc = file_cnt * frames_per_file
                output_dict = feat_cls.regression_label_format_to_output_format(
                    test_sed_pred[dc:dc + max_frames_with_content, :],
                    test_doa_pred[dc:dc + max_frames_with_content, :])
                data_gen_test.write_output_format_file(output_file,
                                                       output_dict)

        if params['mode'] is 'dev':
            test_data_in, test_data_out = data_gen_test.get_data_sizes()
            test_gt = collect_test_labels(data_gen_test, test_data_out,
                                          nb_classes, params['quick_test'])
            test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
            test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])

            # Calculate DCASE2019 scores
            test_sed_loss = evaluation_metrics.compute_sed_scores(
                test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
            test_doa_loss = evaluation_metrics.compute_doa_scores_regr_xyz(
                test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
            test_metric_loss = evaluation_metrics.early_stopping_metric(
                test_sed_loss, test_doa_loss)

            # Calculate DCASE2020 scores
            cls_new_metric = SELD_evaluation_metrics.SELDMetrics(
                nb_classes=data_gen_test.get_nb_classes(), doa_threshold=20)
            test_pred_dict = feat_cls.regression_label_format_to_output_format(
                test_sed_pred, test_doa_pred)
            test_gt_dict = feat_cls.regression_label_format_to_output_format(
                test_sed_gt, test_doa_gt)

            test_pred_blocks_dict = feat_cls.segment_labels(
                test_pred_dict, test_sed_pred.shape[0])
            test_gt_blocks_dict = feat_cls.segment_labels(
                test_gt_dict, test_sed_gt.shape[0])

            cls_new_metric.update_seld_scores_xyz(test_pred_blocks_dict,
                                                  test_gt_blocks_dict)
            test_new_metric = cls_new_metric.compute_seld_scores()
            test_new_seld_metric = evaluation_metrics.early_stopping_metric(
                test_new_metric[:2], test_new_metric[2:])

            avg_scores_test.append([
                test_new_metric[0], test_new_metric[1], test_new_metric[2],
                test_new_metric[3], test_new_seld_metric
            ])
            print('Results on test split:')

            print('\tDCASE2020 Scores')
            print(
                '\tClass-aware localization scores: DOA Error: {:0.1f}, F-score: {:0.1f}'
                .format(test_new_metric[2], test_new_metric[3] * 100))
            print(
                '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_new_metric[0], test_new_metric[1] * 100))
            print('\tSELD (early stopping metric): {:0.2f}'.format(
                test_new_seld_metric))

            print('\n\tDCASE2019 Scores')
            print(
                '\tLocalization-only scores: DOA Error: {:0.1f}, Frame recall: {:0.1f}'
                .format(test_doa_loss[0], test_doa_loss[1] * 100))
            print(
                '\tDetection-only scores:Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_sed_loss[0], test_sed_loss[1] * 100))
Пример #17
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.

    :param argv: expects two optional inputs.
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'],
                                                         params['sequence_length'])

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['train_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['val_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='validation', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    #n_classes = data_out[0][2]

    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], summary=True)

    if (os.path.exists('{}_model.ckpt'.format(unique_name))):
        print("Model found!")
        model.load_weights('{}_model.ckpt'.format(unique_name))
        for i in range(10):
            print("###")

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()

        print("##### Training the model #####")
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            epochs=1,
            verbose=1
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]
        print("##########################")

        # Save, get model and re-load weights for the predict_generator bug
        print("##### Saving weights #####")
        model.save_weights('{}_model.ckpt'.format(unique_name))

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                      classification_mode=params['mode'], weights=params['loss_weights'], summary=False)
        model.load_weights('{}_model.ckpt'.format(unique_name))
        print("##########################")

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1
        )
        print("########################################")
        # print("pred:",pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            # Old confidence intervals
            '''
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %.5f, %.5f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %.5f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %.5f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %.5f, %.5f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %.5f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %.5f" % (doa_conf_up - doa_median))
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt,
                                                                           data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

        # New confidence computation, differing doa and sed errors
        sed_err = sed_loss[epoch_cnt, 0]
        [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
        print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

        #doa_err = doa_gt - doa_pred
        #[x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)

        plot_array = [tr_loss[epoch_cnt],  # 0
                      val_loss[epoch_cnt],  # 1
                      sed_loss[epoch_cnt][0],  # 2    er
                      sed_loss[epoch_cnt][1],  # 3    f1
                      doa_loss[epoch_cnt][0],  # 4    avg_accuracy
                      doa_loss[epoch_cnt][1],  # 5    doa_loss_gt
                      doa_loss[epoch_cnt][2],  # 6    doa_loss_pred
                      doa_loss[epoch_cnt][3],  # 7    doa_loss_gt_cnt
                      doa_loss[epoch_cnt][4],  # 8    doa_loss_pred_cnt
                      doa_loss[epoch_cnt][5],  # 9    good_frame_cnt
                      sed_score[epoch_cnt],  # 10
                      doa_score[epoch_cnt],
                      seld_score[epoch_cnt],
                      #doa_conf_low, doa_median,
                      #doa_conf_up, sed_conf_low,
                      #sed_median, sed_conf_up]
                      sed_conf_low, sed_conf_up]

        patience_cnt += 1

        # model.save_weights('{}_model.ckpt'.format(unique_name))
        simple_plotter.save_array_to_csv("{}_plot.csv".format(unique_name), plot_array)
        #simple_plotter.plot_confidence(x_err, y_err, z_err, "ov")
        print("##### Model and metrics saved! #####")

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            # Now we save the model at every iteration
            model.save_weights('{}_BEST_model.ckpt'.format(unique_name))
            patience_cnt = 0

        print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
              'F1_overall: %.2f, ER_overall: %.2f, '
              'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
              'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f, best_error_metric: %.2f, best_epoch : %d' %
              (
                  epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                  sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                  doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                  sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt], best_metric, best_epoch
              )
              )

    # plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))