def main():
    data_set = SquADDataSet(data_path='./data/SQuAD/train-v1.1.json')
    print('size: ', data_set.size())
    for index in range(20):
        context, question, answer = data_set.get_data(index)
        print('#' + str(index) + ' context:', context)
        print('#' + str(index) + ' question:', question)
        print('#' + str(index) + ' answer:', answer)
        print('++++++++++++++++++++++++++++++++++++++++++++++++++++')
Пример #2
0
def main():
    qa = Seq2SeqV2QA()
    qa.load_model(model_dir_path='./models')
    data_set = SquADDataSet(data_path='./data/SQuAD/train-v1.1.json')
    for i in range(20):
        index = i * 10
        paragraph, question, actual_answer = data_set.get_data(index)
        predicted_answer = qa.reply(paragraph, question)
        print('context: ', paragraph)
        print('question: ', question)
        print({'guessed_answer': predicted_answer, 'actual_answer': actual_answer})
Пример #3
0
def main():
    with open('./data/SQuAD/train-v1.1.json') as file:
        ds = json.load(file)
        data_set = SquADDataSet(queries=ds)
    # data_set = SquADDataSet(data_path='./data/SQuAD/train-v1.1.json')
    print('size: ', data_set.size())
    for index, value in enumerate(data_set.get_data()[0:1]):
        context, question, answer = value
        print('#' + str(index) + ' context:', context)
        print('#' + str(index) + ' question:', question)
        print('#' + str(index) + ' answer:', answer)
        print('++++++++++++++++++++++++++++++++++++++++++++++++++++')
def main():
    qa = Seq2SeqQA()
    qa.load_model(model_dir_path='./models')
    data_set = SquADDataSet(data_path='./data/SQuAD/train-v1.1.json')
    with open('./data/SQuAD/train-v1.1.json') as f:
        import json
        print(json.load(f)['data'][0]['paragraphs'][0]['qas'])
def main():
    random_state = 42
    output_dir_path = './models'

    np.random.seed(random_state)
    data_set = SquADDataSet(data_path='./data/SQuAD/train-v1.1.json')

    qa = Seq2SeqQA()
    batch_size = 64
    epochs = 200
    history = qa.fit(data_set,
                     model_dir_path=output_dir_path,
                     batch_size=batch_size,
                     epochs=epochs,
                     random_state=random_state)
Пример #6
0
from flask import Flask, request, redirect, render_template, flash, abort, jsonify
from keras_question_and_answering_system.library.seq2seq import Seq2SeqQA
from keras_question_and_answering_system.library.utility.squad import SquADDataSet

app = Flask(__name__)
app.config.from_object(__name__)  # load config from this file , flaskr.py

# Load default config and override config from an environment variable
app.config.from_envvar('FLASKR_SETTINGS', silent=True)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

seq2seq = Seq2SeqQA()
data_set = SquADDataSet(data_path=None)
qa_list = list()


@app.route('/')
def home():
    return render_template('home.html', qa_list=qa_list)


#@app.route('/about')
#def about():
#    return 'About Us'


@app.route('/qa', methods=['POST', 'GET'])
def qa():
    if request.method == 'POST':
        if 'question_context' not in request.form and 'question' not in request.form:
            flash('No sentence post')