Пример #1
0
def main():
    sess = K.get_session()
    image_size = 384
    image_input = Input(shape=(image_size, image_size, 3))
    dataname = 'Piman'
    class_names = [dataname]
    YOLO_ANCHORS = np.array(
        ((0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434),
         (7.88282, 3.52778), (9.77052, 9.16828)))
    anchors = YOLO_ANCHORS

    yolo = tiny_yolo_body(image_input, len(anchors), len(class_names))
    yolo.load_weights('tiny_weights.h5')

    image_shape = (1080., 1920.)
    yolo_outputs = yolo_head(yolo.output, anchors, len(class_names))
    boxes, scores, classes = yolo_eval(yolo_outputs, image_shape)

    cap = cv2.VideoCapture(GST_STR, cv2.CAP_GSTREAMER)
    count = 176
    if True:
        fourcc = cv2.VideoWriter_fourcc(*'DIVX')
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        writer = cv2.VideoWriter('pimanDetect2.avi', fourcc, fps,
                                 (width, height))
    while True:
        ret, img = cap.read()
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(img)
        if ret != True:
            break

        resized_image = img.resize(tuple(reversed((384, 384))), Image.BICUBIC)
        image_data = np.array(resized_image, dtype='float32')
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],
                                                      feed_dict={
                                                          yolo.input:
                                                          image_data,
                                                          K.learning_phase(): 0
                                                      })
        print('Found {} boxes for {}'.format(len(out_boxes), "hoge"))
        # Generate colors for drawing bounding boxes.
        colors = generate_colors(class_names)
        # Draw bounding boxes on the image file
        draw_boxes(img, out_scores, out_boxes, out_classes, class_names,
                   colors)

        cv2.imshow(WINDOW_NAME, np.asarray(img)[..., ::-1])
        writer.write(np.asarray(img)[..., ::-1])
        key = cv2.waitKey(10)
        if key == 27:  # ESC
            break
    writer.release()
    cap.release()
Пример #2
0
def predict(sess, image_file, yolo_model, anchors, class_names):
    """
    Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the predictions.
    
    Arguments:
    sess -- your tensorflow/Keras session containing the YOLO graph
    image_file -- name of an image stored in the "images" folder.
    
    Returns:
    out_scores -- tensor of shape (None, ), scores of the predicted boxes
    out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes
    out_classes -- tensor of shape (None, ), class index of the predicted boxes
    
    Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes. 
    """

    # Preprocess your image
    image, image_data = preprocess_image("images/" + image_file,
                                         model_image_size=(608, 608))

    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))
    scores, boxes, classes = yolo_eval(yolo_outputs, image_shape=(720., 1280.))
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],
                                                  feed_dict={
                                                      yolo_model.input:
                                                      image_data,
                                                      K.learning_phase(): 0
                                                  })

    # Print predictions info
    print('Found {} boxes for {}'.format(len(out_boxes), image_file))
    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)
    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
    # Save the predicted bounding box on the image
    image.save(os.path.join("out", image_file), quality=90)
    # Display the results in the notebook
    output_image = scipy.misc.imread(os.path.join("out", image_file))
    imshow(output_image)

    return out_scores, out_boxes, out_classes
Пример #3
0
def detect_image(sess, image_input, yolo_model, class_names, anchors):
    """ Detect an image

    Parameters
    ----------
    sess: tensor
        the tensorflow/Keras session containing the YOLO graph.
    image_input: a array
        OpenCV's format in RGB color space.
    yolo_model:
        the model returned by load_model function.
    class_name: str
        the name lists.
    anchors: str
        the anchor lists.

    Returns
    -------
    output_image: str
        still the direction of image.
    class_names: str
        the name lists read from file.
    anchors: str
        the anchor lists read from file.
    """
    image_shape = float(image_input.shape[0]), float(image_input.shape[1])

    # Convert output of the model to usable bounding box tensors
    yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))

    # Filtering boxes
    scores, boxes, classes = yolo_eval(yolo_outputs, image_shape)

    output_image, out_scores, out_boxes, out_classes = predict(
        sess, image_input, yolo_model, class_names, scores, boxes, classes)

    return output_image, out_scores, out_boxes, out_classes
    ·每个19*19的单元格拥有425个数字
    ·425=5*85,即每个单元格拥有5个锚框,每个锚框由5个基本信息+80个分类预测构成
    ·85=5+80,其中5个基本信息是(Pc,Px,Py,Ph,Pw),剩下的80个就是80个分类预测
4、然后我们会根据一下规则选择锚框:
    ·预测分数阈值:丢弃分数低于阈值的分类的锚框
    ·非最大值抑制:计算交并比,并避免选择重叠的框
5、最后给出YOLO的输出
"""
sess = K.get_session()
class_names = read_classes('F:\\吴恩达DL作业\课后作业\\代码作业\\第四课第三周编程作业\\Car detection for Autonomous Driving\\model_data\\coco_classes.txt')
anchors = read_anchors('F:\\吴恩达DL作业\课后作业\\代码作业\\第四课第三周编程作业\\Car detection for Autonomous Driving\\model_data\\yolo_anchors.txt')
image_shape = (720., 1280.)
yolo_model = load_model('F:\\吴恩达DL作业\课后作业\\代码作业\\第四课第三周编程作业\\Car detection for Autonomous Driving\\model_data\\yolo.h5')
yolo_model.summary()

yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))
scores, boxes, classes = yolo_eval(yolo_outputs, image_shape)

def predict(sess, image_file, is_show_info=True, is_plot=True):
    """
    运行存储在sess的计算图以预测image_file的边界框,打印出预测图与信息
    :param sess: 包含了YOLO计算图的TensorFlow/keras的会话
    :param imagefile: 存储images文件下的图片名称
    :param is_show_info:
    :param is_plot:
    :return:
            out_scores:tensor, (None, ),锚框的预测的可能值
            out_boxes:tensor, (None,4),包含了锚框位置信息
            out_classes:tensor, (None, ),锚框的预测的分类索引
    """
    image, image_data = preprocess_image(image_file, model_image_size =(608, 608))###预处理图像