Пример #1
0
def main_worker(ngpus_per_node, args):
    mean, std = model_utils.get_preprocessing_function(args.colour_space,
                                                       args.vision_type)

    if args.gpus is not None:
        print("Use GPU: {} for training".format(args.gpus))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + args.gpus
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)

    # create model
    if args.transfer_weights is not None:
        print('Transferred model!')
        (model, _) = model_utils.which_network(args.transfer_weights[0],
                                               args.task_type,
                                               num_classes=args.old_classes)
        which_layer = -1
        if len(args.transfer_weights) == 2:
            which_layer = args.transfer_weights[1]
        model = model_utils.NewClassificationModel(model, which_layer,
                                                   args.num_classes)
    elif args.custom_arch:
        print('Custom model!')
        supported_customs = ['resnet_basic_custom', 'resnet_bottleneck_custom']
        if os.path.isfile(args.network_name):
            checkpoint = torch.load(args.network_name, map_location='cpu')
            customs = None
            if 'customs' in checkpoint:
                customs = checkpoint['customs']
                # TODO: num_classes is just for backward compatibility
                if 'num_classes' not in customs:
                    customs['num_classes'] = 1000
            model = which_architecture(checkpoint['arch'], customs,
                                       args.contrast_head)
            args.network_name = checkpoint['arch']

            model.load_state_dict(checkpoint['state_dict'], strict=False)
        elif args.network_name in supported_customs:
            model = custom_models.__dict__[args.network_name](
                args.blocks,
                contrast_head=args.contrast_head,
                pooling_type=args.pooling_type,
                in_chns=len(mean),
                num_classes=args.num_classes,
                inplanes=args.num_kernels,
                kernel_size=args.kernel_size)
    elif args.pretrained:
        print("=> using pre-trained model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name]()

    # TODO: why load weights is False?
    args.out_dir = prepare_training.prepare_output_directories(
        dataset_name='contrast',
        network_name=args.network_name,
        optimiser='sgd',
        load_weights=False,
        experiment_name=args.experiment_name,
        framework='pytorch')
    # preparing the output folder
    create_dir(args.out_dir)
    json_file_name = os.path.join(args.out_dir, 'args.json')
    with open(json_file_name, 'w') as fp:
        json.dump(dict(args._get_kwargs()), fp, sort_keys=True, indent=4)

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpus is not None:
            torch.cuda.set_device(args.gpus)
            model.cuda(args.gpus)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(args.workers / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpus])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpus is not None:
        torch.cuda.set_device(args.gpus)
        model = model.cuda(args.gpus)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if (args.network_name.startswith('alexnet')
                or args.network_name.startswith('vgg')):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpus)

    # optimiser
    if args.transfer_weights is None:
        optimizer = torch.optim.SGD(model.parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    else:
        # for p in model.features.parameters():
        #     p.requires_grad = False
        params_to_optimize = [
            {
                'params': [p for p in model.features.parameters()],
                'lr': 1e-6
            },
            {
                'params': [p for p in model.fc.parameters()]
            },
        ]
        optimizer = torch.optim.SGD(params_to_optimize,
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

    model_progress = []
    model_progress_path = os.path.join(args.out_dir, 'model_progress.csv')
    # optionally resume from a checkpoint
    # TODO: it would be best if resume load the architecture from this file
    # TODO: merge with which_architecture
    best_acc1 = 0
    if args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location='cpu')
            args.initial_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            model.load_state_dict(checkpoint['state_dict'])
            if args.gpus is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpus)
                model = model.cuda(args.gpus)
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            if os.path.exists(model_progress_path):
                model_progress = np.loadtxt(model_progress_path, delimiter=',')
                model_progress = model_progress.tolist()
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    train_trans = []
    valid_trans = []
    both_trans = []
    if args.mosaic_pattern is not None:
        mosaic_trans = preprocessing.mosaic_transformation(args.mosaic_pattern)
        both_trans.append(mosaic_trans)

    if args.num_augmentations != 0:
        augmentations = preprocessing.random_augmentation(
            args.augmentation_settings, args.num_augmentations)
        train_trans.append(augmentations)

    target_size = default_configs.get_default_target_size(
        args.dataset, args.target_size)

    # loading the training set
    train_trans = [*both_trans, *train_trans]
    db_params = {
        'colour_space': args.colour_space,
        'vision_type': args.vision_type,
        'mask_image': args.mask_image
    }
    if args.dataset in ['imagenet', 'celeba', 'natural']:
        path_or_sample = args.data_dir
    else:
        path_or_sample = args.train_samples
    train_dataset = dataloader.train_set(args.dataset,
                                         target_size,
                                         mean,
                                         std,
                                         extra_transformation=train_trans,
                                         data_dir=path_or_sample,
                                         **db_params)
    if args.dataset == 'natural':
        train_dataset.num_crops = args.batch_size
        args.batch_size = 1

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    # loading validation set
    valid_trans = [*both_trans, *valid_trans]
    validation_dataset = dataloader.validation_set(
        args.dataset,
        target_size,
        mean,
        std,
        extra_transformation=valid_trans,
        data_dir=path_or_sample,
        **db_params)
    if args.dataset == 'natural':
        validation_dataset.num_crops = train_dataset.num_crops
        args.batch_size = 1

    val_loader = torch.utils.data.DataLoader(validation_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # training on epoch
    for epoch in range(args.initial_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        misc_utils.adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train_log = train_on_data(train_loader, model, criterion, optimizer,
                                  epoch, args)

        # evaluate on validation set
        validation_log = validate_on_data(val_loader, model, criterion, args)

        model_progress.append([*train_log, *validation_log])

        # remember best acc@1 and save checkpoint
        acc1 = validation_log[2]
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if misc_utils.is_saving_node(args.multiprocessing_distributed,
                                     args.rank, ngpus_per_node):
            misc_utils.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.network_name,
                    'customs': {
                        'pooling_type': args.pooling_type,
                        'in_chns': len(mean),
                        'num_classes': args.num_classes,
                        'blocks': args.blocks,
                        'num_kernels': args.num_kernels,
                        'kernel_size': args.kernel_size
                    },
                    'preprocessing': {
                        'mean': mean,
                        'std': std
                    },
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict(),
                    'target_size': target_size,
                },
                is_best,
                out_folder=args.out_dir)
            # TODO: get this header directly as a dictionary keys
            header = 'epoch,t_time,t_loss,t_top1,t_top5,v_time,v_loss,v_top1,v_top5'
            np.savetxt(model_progress_path,
                       np.array(model_progress),
                       delimiter=',',
                       header=header)
Пример #2
0
def epochs(model, train_loader, validation_loader, optimizer, args):
    model_progress = []
    best_euc = np.inf
    # optionally resume from a checkpoint
    if args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location='cpu')
            args.initial_epoch = checkpoint['epoch']
            best_euc = checkpoint['best_euc']
            model.load_state_dict(checkpoint['state_dict'])
            model = model.to(args.device)
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(
                "=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint['epoch']
                )
            )
            model_progress_path = args.resume.replace(
                'checkpoint.pth.tar', 'model_progress.csv'
            )
            if os.path.exists(model_progress_path):
                model_progress = np.loadtxt(model_progress_path, delimiter=',')
                model_progress = model_progress.tolist()

    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[int(args.epochs * 0.33), int(args.epochs * 0.66)],
        last_epoch=args.initial_epoch - 1
    )

    file_path = os.path.join(args.out_dir, 'model_progress.csv')
    criterion = args.criterion
    for epoch in range(args.initial_epoch, args.epochs):
        scheduler.step(epoch=epoch)
        train_log = train(
            train_loader, model, optimizer, criterion, epoch, args
        )

        validation_log = validate(
            validation_loader, model, criterion, args
        )

        model_progress.append([*train_log, *validation_log])

        # remember best euclidean distance and save checkpoint
        euc_distance = validation_log[2]
        is_best = euc_distance < best_euc
        best_euc = max(euc_distance, best_euc)

        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.architecture,
                'kwargs': args.architecture_kwargs,
                'state_dict': model.state_dict(),
                'best_euc': best_euc,
                'optimizer': optimizer.state_dict(),
                'target_size': args.target_size,
            },
            is_best, out_folder=args.out_dir
        )
        # TODO: get this header directly as a dictionary keys
        header = 'epoch,t_time,t_loss,t_euc,v_time,v_loss,v_euc'
        np.savetxt(
            file_path, np.array(model_progress), delimiter=',', header=header
        )
def main_worker(ngpus_per_node, args):
    mean, std = model_utils.get_preprocessing_function(args.colour_space,
                                                       args.vision_type)

    # preparing the output folder
    create_dir(args.out_dir)

    if args.gpus is not None:
        print("Use GPU: {} for training".format(args.gpus))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + args.gpus
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)

    # create model
    if args.transfer_weights is not None:
        print('Transferred model!')
        model = contrast_utils.AFCModel(args.network_name,
                                        args.transfer_weights)
    elif args.custom_arch:
        print('Custom model!')
        supported_customs = ['resnet_basic_custom', 'resnet_bottleneck_custom']
        if args.network_name in supported_customs:
            model = custom_models.__dict__[args.network_name](
                args.blocks,
                pooling_type=args.pooling_type,
                in_chns=len(mean),
                num_classes=args.num_classes,
                inplanes=args.num_kernels,
                kernel_size=args.kernel_size)
    elif args.pretrained:
        print("=> using pre-trained model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name]()

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpus is not None:
            torch.cuda.set_device(args.gpus)
            model.cuda(args.gpus)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(args.workers / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpus])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpus is not None:
        torch.cuda.set_device(args.gpus)
        model = model.cuda(args.gpus)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if (args.network_name.startswith('alexnet')
                or args.network_name.startswith('vgg')):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = soft_cross_entropy

    # optimiser
    if args.transfer_weights is None:
        optimizer = torch.optim.SGD(model.parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    else:
        params_to_optimize = [
            {
                'params': [p for p in model.parameters() if p.requires_grad]
            },
        ]
        optimizer = torch.optim.SGD(params_to_optimize,
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

    model_progress = []
    model_progress_path = os.path.join(args.out_dir, 'model_progress.csv')
    # optionally resume from a checkpoint
    # TODO: it would be best if resume load the architecture from this file
    # TODO: merge with which_architecture
    best_acc1 = 0
    if args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location='cpu')
            args.initial_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            model.load_state_dict(checkpoint['state_dict'])
            if args.gpus is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpus)
                model = model.cuda(args.gpus)
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            if os.path.exists(model_progress_path):
                model_progress = np.loadtxt(model_progress_path, delimiter=',')
                model_progress = model_progress.tolist()
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    train_trans = []
    valid_trans = []
    both_trans = []
    if args.mosaic_pattern is not None:
        mosaic_trans = preprocessing.mosaic_transformation(args.mosaic_pattern)
        both_trans.append(mosaic_trans)

    if args.num_augmentations != 0:
        augmentations = preprocessing.random_augmentation(
            args.augmentation_settings, args.num_augmentations)
        train_trans.append(augmentations)

    target_size = default_configs.get_default_target_size(
        args.dataset, args.target_size)

    final_trans = [
        cv2_transforms.ToTensor(),
        cv2_transforms.Normalize(mean, std),
    ]

    train_trans.append(
        cv2_transforms.RandomResizedCrop(target_size, scale=(0.08, 1.0)))

    # loading the training set
    train_trans = torch_transforms.Compose(
        [*both_trans, *train_trans, *final_trans])
    train_dataset = image_quality.BAPPS2afc(root=args.data_dir,
                                            split='train',
                                            transform=train_trans,
                                            concat=0.5)

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    valid_trans.extend([
        cv2_transforms.Resize(target_size),
        cv2_transforms.CenterCrop(target_size),
    ])

    # loading validation set
    valid_trans = torch_transforms.Compose(
        [*both_trans, *valid_trans, *final_trans])
    validation_dataset = image_quality.BAPPS2afc(root=args.data_dir,
                                                 split='val',
                                                 transform=valid_trans,
                                                 concat=0)

    val_loader = torch.utils.data.DataLoader(validation_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # training on epoch
    for epoch in range(args.initial_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        misc_utils.adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train_log = train_on_data(train_loader, model, criterion, optimizer,
                                  epoch, args)

        # evaluate on validation set
        validation_log = validate_on_data(val_loader, model, criterion, args)

        model_progress.append([*train_log, *validation_log])

        # remember best acc@1 and save checkpoint
        acc1 = validation_log[2]
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if misc_utils.is_saving_node(args.multiprocessing_distributed,
                                     args.rank, ngpus_per_node):
            misc_utils.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.network_name,
                    'customs': {
                        'pooling_type': args.pooling_type,
                        'in_chns': len(mean),
                        'num_classes': args.num_classes,
                        'blocks': args.blocks,
                        'num_kernels': args.num_kernels,
                        'kernel_size': args.kernel_size
                    },
                    'transfer_weights': args.transfer_weights,
                    'preprocessing': {
                        'mean': mean,
                        'std': std
                    },
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict(),
                    'target_size': target_size,
                },
                is_best,
                out_folder=args.out_dir)
            # TODO: get this header directly as a dictionary keys
            header = 'epoch,t_time,t_loss,t_top5,v_time,v_loss,v_top1'
            np.savetxt(model_progress_path,
                       np.array(model_progress),
                       delimiter=',',
                       header=header)
Пример #4
0
def main_worker(ngpus_per_node, args):
    global best_acc1

    is_pill_img = 'wcs_xyz_png_1600' in args.data_dir

    mean, std = model_utils.get_preprocessing_function(args.colour_space,
                                                       args.vision_type)

    # preparing the output folder
    create_dir(args.out_dir)

    if args.gpus is not None:
        print("Use GPU: {} for training".format(args.gpus))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + args.gpus
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    if args.prediction:
        checkpoint = torch.load(args.network_weights, map_location='cpu')
        blocks = checkpoint['customs']['blocks']
        pooling_type = checkpoint['customs']['pooling_type']
        num_kernels = checkpoint['customs']['num_kernels']
        outputs = checkpoint['customs']['outputs']
        for key, val in outputs.items():
            if 'area' not in val:
                outputs[key] = None
        model = resnet.__dict__[args.network_name](blocks,
                                                   pooling_type=pooling_type,
                                                   in_chns=len(mean),
                                                   inplanes=num_kernels,
                                                   outputs=outputs)
        model.load_state_dict(checkpoint['state_dict'])
    elif args.transfer_weights is not None:
        print('Transferred model!')
        (model, _) = model_utils.which_network(args.transfer_weights,
                                               args.task_type,
                                               num_classes=args.old_classes)
        model = model_utils.NewClassificationModel(model, args.num_classes)
    elif args.custom_arch:
        print('Custom model!')
        if (args.network_name == 'resnet_basic_custom'
                or args.network_name == 'resnet_bottleneck_custom'):
            outputs = {'objects': None, 'munsells': None, 'illuminants': None}
            imagenet_weights = args.imagenet_weights
            if args.object_area is not None:
                outputs['objects'] = {
                    'num_classes': 2100,
                    'area': args.object_area
                }
            if args.munsell_area is not None:
                outputs['munsells'] = {
                    'num_classes': 1600,
                    'area': args.munsell_area
                }
            if args.illuminant_area is not None:
                outputs['illuminants'] = {
                    'num_classes': 280,
                    'area': args.illuminant_area
                }

            model = resnet.__dict__[args.network_name](
                args.blocks,
                pooling_type=args.pooling_type,
                in_chns=len(mean),
                inplanes=args.num_kernels,
                outputs=outputs,
                imagenet_weights=imagenet_weights)
    elif args.pretrained:
        print("=> using pre-trained model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.network_name))
        model = models.__dict__[args.network_name]()

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpus is not None:
            torch.cuda.set_device(args.gpus)
            model.cuda(args.gpus)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(args.workers / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpus])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpus is not None:
        torch.cuda.set_device(args.gpus)
        model = model.cuda(args.gpus)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if (args.network_name.startswith('alexnet')
                or args.network_name.startswith('vgg')):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpus)

    # optimiser
    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    model_progress = []
    model_progress_path = os.path.join(args.out_dir, 'model_progress.csv')
    # optionally resume from a checkpoint
    # TODO: it would be best if resume load the architecture from this file
    # TODO: merge with which_architecture
    if args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location='cpu')
            args.initial_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            model.load_state_dict(checkpoint['state_dict'])
            if args.gpus is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpus)
                model = model.cuda(args.gpus)
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            if os.path.exists(model_progress_path):
                model_progress = np.loadtxt(model_progress_path, delimiter=',')
                model_progress = model_progress.tolist()
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    normalize = transforms.Normalize(mean=mean, std=std)

    other_transformations = []
    if args.num_augmentations != 0:
        augmentations = preprocessing.random_augmentation(
            args.augmentation_settings, args.num_augmentations)
        other_transformations.append(augmentations)

    target_size = get_default_target_size(args.dataset, args.target_size)

    train_dataset, validation_dataset = get_train_val_dataset(
        args.data_dir, other_transformations, [], normalize,
        args.imagenet_weights)

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    if args.prediction:
        manipulation_values = args.parameters['kwargs'][args.manipulation]
        manipulation_name = args.parameters['f_name']

        for j, manipulation_value in enumerate(manipulation_values):
            args.parameters['kwargs'][args.manipulation] = manipulation_value
            prediction_transformation = preprocessing.prediction_transformation(
                args.parameters, args.colour_space,
                tmp_c_space(manipulation_name))
            other_transformations = [prediction_transformation]
            _, validation_dataset = get_train_val_dataset(
                args.data_dir, other_transformations, other_transformations,
                normalize, args.imagenet_weights)

            val_loader = torch.utils.data.DataLoader(
                validation_dataset,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True)

            pred_log = predict(val_loader, model, criterion,
                               torch.device(args.gpus))
            from kernelphysiology.dl.utils import prepapre_testing
            prepapre_testing.save_predictions(pred_log, args.experiment_name,
                                              args.pred_name, args.dataset,
                                              manipulation_name,
                                              manipulation_value)
        return

    val_loader = torch.utils.data.DataLoader(validation_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    if args.ill_colour is not None:
        print('Performing with illuminant correction')
        args.ill_colour = np.loadtxt(args.ill_colour, delimiter=',')

    # training on epoch
    for epoch in range(args.initial_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        if args.imagenet_weights is None:
            adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train_log = train_on_data(train_loader, model, criterion, optimizer,
                                  epoch, args)

        # evaluate on validation set
        validation_log = validate_on_data(val_loader, model, criterion, args)

        model_progress.append([*train_log, *validation_log])

        # remember best acc@1 and save checkpoint
        acc1 = validation_log[2]
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.network_name,
                    'customs': {
                        'pooling_type': args.pooling_type,
                        'in_chns': len(mean),
                        'num_classes': args.num_classes,
                        'blocks': args.blocks,
                        'num_kernels': args.num_kernels,
                        'outputs': outputs
                    },
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict(),
                    'target_size': target_size,
                },
                is_best,
                out_folder=args.out_dir)
        # TODO: get this header directly as a dictionary keys
        header = 'epoch,t_time,t_loss,t_lo,t_lm,t_li,t_ao,t_am,t_ai,' \
                 'v_time,v_loss,v_lo,v_lm,v_li,v_ao,v_am,v_ai'
        np.savetxt(model_progress_path,
                   np.array(model_progress),
                   delimiter=',',
                   header=header)