Пример #1
0
 def forward(self, query_points, support_points, neighbors_indices,
             features):
     """
     This module performs a Kernel Point Convolution. (both normal and strided version)
     :param query_points: float32[n_points, dim] - input query points (center of neighborhoods)
     :param support_points: float32[n0_points, dim] - input support points (from which neighbors are taken)
     :param neighbors_indices: int32[n_points, n_neighbors] - indices of neighbors of each point
     :param features: float32[n_points, in_fdim] - input features
     :return: output_features float32[n_points, out_fdim]
     """
     if self.deformable_v2:
         x = conv_ops.KPConv_deformable_v2(
             query_points,
             support_points,
             neighbors_indices,
             features,
             K_values=self.weight,
             w0=self.offset_weight,
             b0=self.offset_bias,
             fixed=self.config.fixed_kernel_points,
             KP_extent=self.config.KP_extent * self.radius /
             self.config.density_parameter,
             KP_influence=self.config.KP_influence,
             aggregation_mode=self.config.convolution_mode,
             modulated=self.config.modulated)
     else:
         x = conv_ops.KPConv_deformable(
             query_points,
             support_points,
             neighbors_indices,
             features,
             K_values=self.weight,
             w0=self.offset_weight,
             b0=self.offset_bias,
             fixed=self.config.fixed_kernel_points,
             KP_extent=self.config.KP_extent * self.radius /
             self.config.density_parameter,
             KP_influence=self.config.KP_influence,
             aggregation_mode=self.config.convolution_mode,
             modulated=self.config.modulated)
     if self.config.use_batch_norm:
         x = self.relu(self.bn(x))
     else:
         x = self.relu(x)
     return x
Пример #2
0
def KPConv_deformable_v2(query_points, support_points, neighbors_indices, features, K_values, radius, config):
    """
    Perform a simple convolution followed by a batch normalization (or a simple bias) and ReLu
    """

    # Get KP extent from current radius and config density
    extent = config.KP_extent * radius / config.density_parameter

    # Convolution
    return conv_ops.KPConv_deformable_v2(query_points,
                                         support_points,
                                         neighbors_indices,
                                         features,
                                         K_values,
                                         config.num_kernel_points,
                                         fixed=config.fixed_kernel_points,
                                         KP_extent=extent,
                                         KP_influence=config.KP_influence,
                                         mode=config.convolution_mode,
                                         modulated=config.modulated)