Пример #1
0
def verify(run: kfp_server_api.ApiRun, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    verify_tasks(t, tasks)
def verify(run: kfp_server_api.ApiRun, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    pprint(tasks)

    output_artifact = tasks['output-artifact']
    output = [
        a for a in output_artifact.outputs.artifacts if a.name == 'Output'
    ][0]
    pprint(output)

    host = os.environ['MINIO_SERVICE_SERVICE_HOST']
    port = os.environ['MINIO_SERVICE_SERVICE_PORT']
    minio = Minio(f'{host}:{port}',
                  access_key='minio',
                  secret_key='minio123',
                  secure=False)
    bucket, key = output.uri[len('minio://'):].split('/', 1)
    print(f'bucket={bucket} key={key}')
    response = minio.get_object(bucket, key)
    data = response.read().decode('UTF-8')
    t.assertEqual(data, 'firstsecond\nfirstsecond\nfirstsecond')
Пример #3
0
def verify_with_specific_pipeline_root(run: kfp_server_api.ApiRun,
                                       mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    verify_tasks(t, tasks)
    verify_artifacts(t, tasks, 'minio://mlpipeline/override/artifacts')
Пример #4
0
def verify(run, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')

    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)

    tasks = client.get_tasks(run_id=run.id)
    t.assertEqual(17, tasks['add-3'].outputs.parameters['sum'],
                  'add result should be 17')
Пример #5
0
def verify(run: kfp_server_api.ApiRun, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    pprint(tasks)

    roc_visualization = tasks['roc-visualization']
    output = [
        a for a in roc_visualization.outputs.artifacts
        if a.name == 'mlpipeline_ui_metadata'
    ][0]
    pprint(output)

    t.assertEqual(
        roc_visualization.get_dict()['outputs']['artifacts'][0]['name'],
        'mlpipeline_ui_metadata')
Пример #6
0
def verify(mlmd_connection_config, run: kfp_server_api.ApiRun, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff

    t.assertEqual(run.status, 'Succeeded')

    # Verify MLMD state
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    task_names = [*tasks.keys()]
    t.assertEqual(task_names, ['echo-msg', 'print-file', 'download-from-gcs'])

    for task in task_names:
        pprint(f'======= {task} =======')
        pprint(tasks.get(task).get_dict())

    t.assertEqual(
        tasks.get('echo-msg').inputs.parameters.get('msg'),
        'exit!',
    )
def verify(run: kfp_server_api.ApiRun, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')

    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)
    # uncomment to debug
    # pprint(tasks)
    vis = tasks['create-tensorboard-visualization']
    pprint(vis)
    mlpipeline_ui_metadata = vis.outputs.artifacts[0]
    t.assertEqual(mlpipeline_ui_metadata.name, 'mlpipeline-ui-metadata')

    # download artifact content
    storage_client = storage.Client()
    blob = storage.Blob.from_string(mlpipeline_ui_metadata.uri, storage_client)
    data = blob.download_as_text(storage_client)
    data = json.loads(data)
    t.assertTrue(data["outputs"][0]["source"])
    # source is a URI that is generated differently each run
    data["outputs"][0]["source"] = "<redacted>"
    t.assertEqual(
        {
            "outputs": [{
                "type":
                    "tensorboard",
                "source":
                    "<redacted>",
                "image":
                    "gcr.io/deeplearning-platform-release/tf2-cpu.2-3:latest",
                "pod_template_spec": {
                    "spec": {
                        "containers": [{
                            "env": [{
                                "name": "AWS_ACCESS_KEY_ID",
                                "valueFrom": {
                                    "secretKeyRef": {
                                        "name": "mlpipeline-minio-artifact",
                                        "key": "accesskey"
                                    }
                                }
                            }, {
                                "name": "AWS_SECRET_ACCESS_KEY",
                                "valueFrom": {
                                    "secretKeyRef": {
                                        "name": "mlpipeline-minio-artifact",
                                        "key": "secretkey"
                                    }
                                }
                            }, {
                                "name": "AWS_REGION",
                                "value": "minio"
                            }, {
                                "name": "S3_ENDPOINT",
                                "value": "minio-service:9000"
                            }, {
                                "name": "S3_USE_HTTPS",
                                "value": "0"
                            }, {
                                "name": "S3_VERIFY_SSL",
                                "value": "0"
                            }]
                        }]
                    }
                }
            }]
        }, data)
Пример #8
0
def verify(run: kfp_server_api.ApiRun, mlmd_connection_config, **kwargs):
    t = unittest.TestCase()
    t.maxDiff = None  # we always want to see full diff
    t.assertEqual(run.status, 'Succeeded')
    client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config)
    tasks = client.get_tasks(run_id=run.id)

    task_names = [*tasks.keys()]
    t.assertCountEqual(task_names, ['preprocess', 'train'], 'task names')
    pprint(tasks)

    preprocess = tasks['preprocess']
    train = tasks['train']
    pprint(preprocess.get_dict())
    t.assertEqual(
        {
            'inputs': {
                'parameters': {
                    'message': 'message',
                }
            },
            'name': 'preprocess',
            'outputs': {
                'artifacts': [{
                    'metadata': {
                        'display_name': 'output_dataset_one'
                    },
                    'name': 'output_dataset_one',
                    'type': 'system.Dataset'
                }, {
                    'metadata': {
                        'display_name': 'output_dataset_two_path'
                    },
                    'name': 'output_dataset_two_path',
                    'type': 'system.Dataset'
                }],
                'parameters': {
                    'output_bool_parameter_path': True,
                    'output_dict_parameter_path': {
                        "A": 1,
                        "B": 2
                    },
                    'output_list_parameter_path': ["a", "b", "c"],
                    'output_parameter_path': 'message'
                }
            },
            'type': 'system.ContainerExecution',
            'state': Execution.State.COMPLETE,
        },
        preprocess.get_dict(),
    )
    t.assertEqual(
        {
            'inputs': {
                'artifacts': [{
                    'metadata': {
                        'display_name': 'output_dataset_one'
                    },
                    'name': 'dataset_one_path',
                    'type': 'system.Dataset'
                }, {
                    'metadata': {
                        'display_name': 'output_dataset_two_path'
                    },
                    'name': 'dataset_two',
                    'type': 'system.Dataset'
                }],
                'parameters': {
                    'input_bool': True,
                    'input_dict': {
                        "A": 1.0,
                        "B": 2.0,
                    },
                    'input_list': ["a", "b", "c"],
                    'message': 'message'
                }
            },
            'name': 'train',
            'outputs': {
                'artifacts': [{
                    'metadata': {
                        'display_name': 'model',
                        'accuracy': 0.9,
                    },
                    'name': 'model',
                    'type': 'system.Model'
                }],
            },
            'type': 'system.ContainerExecution',
            'state': Execution.State.COMPLETE,
        },
        train.get_dict(),
    )