Пример #1
0
def main(path, output, model):
    if model is not None:
        bmt.load(model)

    t = JsonTransformer()
    t.parse(path)

    def curie_to_label(curie:str):
        """
        Uses the biolink model toolkit to look up an
        element (on the tree rooted at `named thing`
        and `related to`) for a given curie. If none
        can be found then returns the original curie.
        """
        if isinstance(curie, (list, tuple, set)):
            return [curie_to_label(c) for c in curie]
        elif isinstance(curie, str):
            e = bmt.get_by_mapping(curie)
            return e if e is not None else curie
        else:
            return None

    for n, attr in t.graph.nodes(data=True):
        attr['category'] = curie_to_label(attr.get('category'))

    for s, o, attr in t.graph.edges(data=True):
        attr['predicate'] = curie_to_label(attr.get('predicate'))

    t.save(output)
Пример #2
0
def test_json_save():
    t = JsonTransformer()
    t.parse(os.path.join(resource_dir, 'valid.json'))
    assert t.graph.number_of_nodes() == 6
    assert t.graph.number_of_edges() == 5

    t.save(os.path.join(target_dir, 'graph.json'))
    assert os.path.exists(os.path.join(target_dir, 'graph.json'))
Пример #3
0
def main(path, output, model):
    if model is not None:
        bmt.load(model)

    t = JsonTransformer()
    t.parse(path)
    t = PandasTransformer(t.graph)
    t.save(output)
Пример #4
0
def test_neo_to_graph_upload():
    """ loads a neo4j graph from a json file
    """
    jt = JsonTransformer()
    jt.parse('resources/robodb2.json')

    nt = NeoTransformer(jt.graph, host='localhost', port='7474', username='******', password='******')
    nt.save_with_unwind()
    nt.neo4j_report()
Пример #5
0
def test_validate_json():
    """
    Validate against a valid representative Biolink Model compliant JSON
    """
    json_file = os.path.join(resource_dir, 'valid.json')
    jt = JsonTransformer()
    jt.parse(json_file)
    validator = Validator()
    e = validator.validate(jt.graph)
    assert len(e) == 0
Пример #6
0
def test_load():
    """
    Test for loading into JsonTransformer
    """
    json_file = os.path.join(resource_dir, 'semmed/gene.json')
    jt = JsonTransformer()
    jt.parse(json_file)
    edge_list = list(jt.graph.edges(data=True))
    assert edge_list[0][-1]['subject'] == 'UMLS:C0948075'
    assert edge_list[0][-1]['object'] == 'UMLS:C1290952'
Пример #7
0
def test_export():
    """
    Test export behavior of JsonTransformer
    """
    json_file = os.path.join(resource_dir, 'semmed/gene.json')
    output_file = os.path.join(target_dir, 'semmeddb_export.json')
    jt = JsonTransformer()
    jt.parse(json_file)
    jt.save(output_file)
    assert os.path.isfile(output_file)
Пример #8
0
def test_neo_to_graph_upload():
    """ loads a neo4j graph from a json file
    """
    jt = JsonTransformer()
    jt.parse('resources/robodb2.json')

    nt = NeoTransformer(jt.graph,
                        uri=DEFAULT_NEO4J_URL,
                        username=DEFAULT_NEO4J_USERNAME,
                        password=DEFAULT_NEO4J_PASSWORD)
    nt.save()
    nt.neo4j_report()
Пример #9
0
def test_json_load():
    t = JsonTransformer()
    t.parse(os.path.join(resource_dir, 'valid.json'))
    assert t.graph.number_of_nodes() == 6
    assert t.graph.number_of_edges() == 5

    n = t.graph.nodes['MONDO:0017148']
    assert isinstance(n, dict)
    assert 'id' in n and n['id'] == 'MONDO:0017148'
    assert n['name'] == 'heritable pulmonary arterial hypertension'
    assert n['category'][0] == 'biolink:Disease'

    data = t.graph.get_edge_data('HGNC:11603', 'MONDO:0017148')
    assert len(data.keys()) == 1
    data = data.popitem()[1]
    assert data['subject'] == 'HGNC:11603'
    assert data['object'] == 'MONDO:0017148'
    assert data['edge_label'] == 'biolink:related_to'
    assert data['relation'] == 'RO:0004013'
Пример #10
0
from kgx import JsonTransformer, clique_merge

t = JsonTransformer()
t.parse('results/hp.owl')
t.parse('results/mondo.json')
t.parse('results/hgnc.json')
t.parse('results/clinvar.json')
t.parse('results/omim.json')
t.parse('results/hpoa.json')
t.parse('results/orphanet.json')

#t = PandasTransformer(t.graph)
#t.parse('data/semmeddb_edges.csv')
#t.parse('data/semmeddb_nodes.csv')

t.graph = clique_merge(t.graph)
t.save('results/clique_merged.json')
Пример #11
0
"""
This script prepares the clique_merged.json file for uploading to Neo4j
- Removes nodes that cannot be categorized into the biolink model
- Renames edge labels that don't matche the biolink model to "related_to"
- Transforms into CSV format
"""

from kgx import JsonTransformer, PandasTransformer
import bmt

t = JsonTransformer()
t.parse('results/clique_merged.json')
t = PandasTransformer(t)

G = t.graph

size = len(G)

nodes = []

for n, data in G.nodes(data=True):
    data['category'] = [
        c for c in data.get('category', []) if bmt.get_class(c) is not None
    ]
    if data['category'] == []:
        if 'name' in data:
            data['category'] = ['named thing']
        else:
            nodes.append(n)

G.remove_nodes_from(nodes)
Пример #12
0
from kgx import JsonTransformer, clique_merge
import sys

path = sys.argv[1]

t = JsonTransformer()
t.parse(path)

t.graph = clique_merge(t.graph)

t.save('clique_merged.json')
Пример #13
0
Loads all the turtle files with their required ontologies and transforms them to
json. Then loads all these json files, along with the semmeddb edges.csv and
nodes.csv files, into a single NetworkX graph, and performs `clique_merge` on it.
Finally, saves the resulting NetworkX graph as `clique_merged.csv`
"""

from kgx import ObanRdfTransformer2, JsonTransformer, HgncRdfTransformer, RdfOwlTransformer2
from kgx import clique_merge, make_valid_types

t = RdfOwlTransformer2()
t.parse('data/hp.owl')
t = JsonTransformer(t)
t.save('results/hp.json')

t = RdfOwlTransformer2()
t.parse('data/mondo.owl')
t = JsonTransformer(t)
t.save('results/mondo.json')

t = HgncRdfTransformer()
t.parse('data/hgnc.ttl')
t = JsonTransformer(t)
t.save('results/hgnc.json')

t = ObanRdfTransformer2()
t.add_ontology('data/mondo.owl')
t.add_ontology('data/hp.owl')
t.parse('data/orphanet.ttl')
t = JsonTransformer(t)
t.save('results/orphanet.json')
Пример #14
0
from kgx import ObanRdfTransformer, JsonTransformer, HgncRdfTransformer
from kgx import clique_merge

t = JsonTransformer()
t.parse('hgnc.json')
t.parse('clinvar.json')
t.parse('omim.json')
t.parse('hpoa.json')
t.parse('orphanet.json')
t.save('merged.json')

t.graph = clique_merge(t.graph)
t.save('clique_merged.json')

Пример #15
0
from kgx import ObanRdfTransformer, JsonTransformer, HgncRdfTransformer
from kgx import clique_merge

t = JsonTransformer()
#t.parse('hgnc.json')
#t.parse('clinvar.json')
#t.parse('omim.json')
#t.parse('hpoa.json')
#t.parse('orphanet.json')
t.parse('semmeddb.json')
t.parse('merged.json')
t.save('merged.json')

t.graph = clique_merge(t.graph)
t.save('clique_merged.json')