def set_measured_activity(self):
        """
		Set the full measured activity, from nonlinear response.
		"""

        # Learned background firing only utilizes average background signal
        self.Yy0 = receptor_activity(self.Ss0, self.Kk1, self.Kk2, self.eps,
                                     self.binding_competitive,
                                     self.num_binding_sites)

        self.Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps,
                                    self.binding_competitive,
                                    self.num_binding_sites)

        self.Yy += sp.random.normal(0, self.meas_noise, self.Mm)

        # Apply temporal kernel
        if self.temporal_run == False:
            pass
        else:
            kernel_params = [
                self.kernel_T, self.kernel_dt, self.kernel_tau_1,
                self.kernel_tau_2, self.kernel_shape_1, self.kernel_shape_2,
                self.kernel_alpha, self.kernel_scale
            ]
            self.Yy0, self.memory_Yy0 = temporal_kernel(
                self.Yy0, self.memory_Yy0, self.signal_trace_Tt, kernel_params)
            self.Yy, self.memory_Yy = temporal_kernel(self.Yy, self.memory_Yy,
                                                      self.signal_trace_Tt,
                                                      kernel_params)

        # Nonlinearities
        self.Yy0 *= self.NL_scale * (self.Yy > self.NL_threshold)
        self.Yy *= self.NL_scale * (self.Yy > self.NL_threshold)

        self.Yy0 = sp.minimum(self.Yy0, self.firing_max)
        self.Yy = sp.minimum(self.Yy, self.firing_max)

        # Measured response above background
        self.dYy = self.Yy - self.Yy0

        # Add effects of divisive normalization if called.
        if self.divisive_normalization == True:
            self.Yy0 = inhibitory_normalization(self.Yy0, self.inh_C,
                                                self.inh_D, self.inh_eta,
                                                self.inh_R)
            self.Yy = inhibitory_normalization(self.Yy, self.inh_C, self.inh_D,
                                               self.inh_eta, self.inh_R)
            self.dYy = self.Yy - self.Yy0
    def manual_Kk_replace(self):
        """
		Manually add high responders to Kk2 matrix
		"""

        # First get the epsilon -- needed to calculate activities to find
        # weak responders.
        self.set_normal_free_energy()

        # Get tuning curves
        tuning_curves = sp.zeros((self.Mm, self.Nn))
        for iN in range(self.Nn):
            tuning_Ss = sp.zeros(self.Nn)
            tuning_Ss[iN] = self.manual_Kk_replace_Ss
            tuning_curves[:, iN] = receptor_activity(tuning_Ss, self.Kk1,
                                                     self.Kk2, self.eps,
                                                     self.binding_competitive,
                                                     self.num_binding_sites)

        # Add specialist responses to weak responders
        for iM in range(self.Mm):
            if sp.mean(tuning_curves[iM, :]) < self.manual_Kk_replace_min_act:
                self.Kk2[iM, sp.random.randint(self.Nn)] = \
                 10.**sp.random.uniform(self.manual_Kk_replace_lo,
                 self.manual_Kk_replace_hi)
Пример #3
0
    def set_mean_response_array(self):
        """
		Set the mean receptor responses for the signal array.
		"""

        self.Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps)
        self.Yy *= self.NL_scale * (self.Yy > self.NL_threshold)
        self.Yy = sp.minimum(self.Yy, self.firing_max)
	def set_measured_activity(self):
		# True receptor activity
		self.Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps)
		
		# Learned background activity only utilizes average background signal 
		self.Yy0 = bkgrnd_activity(self.Ss0, self.Kk1, self.Kk2, self.eps)
		
		# Measured response above background
		self.dYy = self.Yy - self.Yy0
Пример #5
0
    def set_temporal_adapted_epsilon(self):
        """
		Set adapted epsilon based on current value and adaptation rate.
		The adapted value is set by linear decay rate equation, 
		d(eps)/dt = beta*(a_0 - a). a_0 is set by passing the manually
		chosen variables temporal_adaptation_mu_eps and 
		temporal_adaptation_mu_Ss0 to the activity. 
		"""

        # Perfectly adapted activity level is set manually
        activity_stats = [
            self.adapted_activity_mu, self.adapted_activity_sigma
        ]
        perfect_adapt_Yy = random_matrix([self.Mm],
                                         params=activity_stats,
                                         seed=self.seed_adapted_activity)
        beta_scale_factors = sp.random.uniform(self.adaptive_beta_scaling_min,
                                               self.adaptive_beta_scaling_max,
                                               self.Mm)

        # This is a kind of hacky way to incorporate WL breaking.
        # Requires Kk1 to be small
        Kk2_sum = sp.dot(self.Kk2**-1.0, self.Ss).T
        den = perfect_adapt_Yy.T*(1 - (1/Kk2_sum)**beta_scale_factors)\
          + (1/Kk2_sum)**beta_scale_factors
        perfect_adapt_Yy = (perfect_adapt_Yy.T / den)

        # Make adaptation rate into a vector if it has not yet been set.
        try:
            self.temporal_adaptation_rate_vector
        except AttributeError:
            assert self.temporal_adaptation_rate_sigma == 0, "Before "\
             "setting new epsilon with set_temporal_adapted_epsilon, "\
             "you must call set_ordered_temporal_adaptation_rate, since "\
             "temporal_adaptation_rate_sigma is nonzero"
            self.temporal_adaptation_rate_vector = sp.ones(self.Mm)*\
             self.temporal_adaptation_rate

        # Receptor activity used for adaptation is not firing rate; just
        # get the Or/Orco activity, w/o LN functions at backend.
        current_Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps,
                                       self.binding_competitive,
                                       self.num_binding_sites)

        if self.temporal_adaptation_type == 'imperfect':
            d_eps_dt = (self.temporal_adaptation_rate_vector*\
               (current_Yy.T - perfect_adapt_Yy)).T
            delta_t = self.signal_trace_Tt[1] - self.signal_trace_Tt[0]
            self.eps += delta_t * d_eps_dt
        elif self.temporal_adaptation_type == 'perfect':
            self.eps = free_energy(self.Ss, self.Kk1, self.Kk2,
                                   perfect_adapt_Yy)

        # Enforce epsilon limits
        self.eps = sp.maximum(self.eps.T, self.min_eps).T
        self.eps = sp.minimum(self.eps.T, self.max_eps).T
    def set_measured_activity(self):
        """
		Set the full measured activity, from nonlinear response.
		"""

        # True receptor activity
        self.Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps)

        # Learned background activity only utilizes average background signal
        self.Yy0 = receptor_activity(self.Ss0, self.Kk1, self.Kk2, self.eps)

        # Measured response above background
        self.dYy = self.Yy - self.Yy0

        # Add effects of divisive normalization if called.
        if self.divisive_normalization == True:
            self.Yy0 = inhibitory_normalization(self.Yy0, self.inh_C,
                                                self.inh_D, self.inh_eta,
                                                self.inh_R)
            self.Yy = inhibitory_normalization(self.Yy, self.inh_C, self.inh_D,
                                               self.inh_eta, self.inh_R)
            self.dYy = self.Yy - self.Yy0
    def set_temporal_adapted_epsilon(self):
        """
		Set adapted epsilon based on current value and adaptation rate.
		The adapted value is set by linear decay rate equation, 
		d(eps)/dt = beta*(a_0 - a). a_0 is set by passing the manually
		chosen variables temporal_adaptation_mu_eps and 
		temporal_adaptation_mu_Ss0 to the activity. 
		"""

        # Perfectly adapted activity level is based on the variables:
        #  temporal_adaptation_mu_eps, temporal_adaptation_sigma_eps,
        #  temporal_adaptation_mu_Ss0. These functions take the activity
        #  level set by these variables at that signal intensity, to
        #  adapt epsilon to the current Ss
        perfect_adapt_eps_base = sp.ones(self.Mm)*\
          self.temporal_adaptation_mu_eps + random_matrix(self.Mm,
          params=[0, self.temporal_adaptation_sigma_eps],
          seed=self.seed_eps)
        perfect_adapt_Ss = sp.zeros(self.Nn)
        perfect_adapt_Ss[self.Ss0 != 0] = self.temporal_adaptation_mu_Ss0
        perfect_adapt_Yy = receptor_activity(perfect_adapt_Ss, self.Kk1,
                                             self.Kk2, perfect_adapt_eps_base)

        # Make adaptation rate into a vector if it has not yet been set.
        try:
            self.temporal_adaptation_rate_vector
        except AttributeError:
            assert self.temporal_adaptation_rate_sigma == 0, "Before "\
             "setting new epsilon with set_temporal_adapted_epsilon, "\
             "you must call set_ordered_temporal_adaptation_rate, since "\
             "temporal_adaptation_rate_sigma is nonzero"
            self.temporal_adaptation_rate_vector = sp.ones(self.Mm)*\
             self.temporal_adaptation_rate

        if self.temporal_adaptation_type == 'imperfect':
            d_eps_dt = self.temporal_adaptation_rate_vector*\
               (self.Yy - perfect_adapt_Yy)
            delta_t = self.signal_trace_Tt[1] - self.signal_trace_Tt[0]
            self.eps += delta_t * d_eps_dt
        elif self.temporal_adaptation_type == 'perfect':
            self.eps = free_energy(self.Ss, self.Kk1, self.Kk2,
                                   perfect_adapt_Yy)
Пример #8
0
def decode_nonlinear_CS(
        obj,
        opt_type="L1_strong",
        precision='None',
        init_params=[sp.random.rand() * -0.1,
                     sp.random.rand() * 0.1]):
    """
	Run CS decoding with L1 norm, using full activity with no linearization.
	
	Args:
		Rr: numpy array; measurement matrix.
		Yy: numpy array; Measured signal.
	
	Optional args:
		opt_type: String for type of L1 minimization "L1_strong" or "L1_weak".
		precision: Float, for L1_weak, the multiplier of the squared error.
		init_params: List; initialization point for the optimization.
	"""
    def L1_strong(x):
        return sp.sum(abs(x))

    from kinetics import receptor_activity

    if opt_type == "L1_strong":
        constraints = ({
            'type':
            'eq',
            'fun':
            lambda x: receptor_activity(x, obj.Kk1, obj.Kk2, obj.eps) - obj.Yy
        })
        res = minimize(
            L1_strong,
            obj.Ss * sp.random.normal(1, 0.1, obj.Nn),
            #sp.random.normal(init_params[0], init_params[1], obj.Nn),
            method='SLSQP',
            constraints=constraints)
    else:
        print('Unknown optimization type')
        quit()

    return res.x