Пример #1
0
    def __init__(self, shape, n=1, fovea_shape=None, fill_method='smudge'):
        """
        Arguments
        ---------
        shape - Expected shape of disparity images
        n - Number of past frames to retain
        fovea_shape - Shape of foveal region to remember (None=whole image)
        fill_method - default 'smudge' works fine and is fast, other options
            are 'none' or 'interp' (which is way too slow)
        """

        self.shape = shape
        self.fovea_shape = fovea_shape
        self.n = n

        calib = Calib()
        self.disp2imu = calib.get_disp2imu()
        self.imu2disp = calib.get_imu2disp()

        self.past_position = []
        self.past_disparity = []

        self.transforms = []

        assert fill_method in ('smudge', 'interp', 'none')
        self.fill_method = fill_method
Пример #2
0
    def __init__(self, shape, n=1, fovea_shape=None, fill_method='smudge'):
        """
        Arguments
        ---------
        shape - Expected shape of disparity images
        n - Number of past frames to retain
        fovea_shape - Shape of foveal region to remember (None=whole image)
        fill_method - default 'smudge' works fine and is fast, other options
            are 'none' or 'interp' (which is way too slow)
        """

        self.shape = shape
        self.fovea_shape = fovea_shape
        self.n = n

        calib = Calib()
        self.disp2imu = calib.get_disp2imu()
        self.imu2disp = calib.get_imu2disp()

        self.past_position = []
        self.past_disparity = []

        self.transforms = []

        assert fill_method in ('smudge', 'interp', 'none')
        self.fill_method = fill_method
Пример #3
0
    print(errors)
    idx = errors.index(min(errors))
    return down_factors[idx], iters[idx], fovea_shapes[idx]

def get_coarse_subwindow():
    pass

def get_seed():
    pass

if __name__ == '__main__':
    plt.ion()

    calib = Calib()
    disp2imu = calib.get_disp2imu()
    imu2disp = calib.get_imu2disp()

    drive = 51
    video = load_stereo_video(drive)
    positions = load_video_odometry(drive)
    initial = video[0]
    
    fig = plt.figure(1)
    fig.clf()
    ax_disp = plt.gca()
    plot_disp = ax_disp.imshow(mean_disparity(drive, n_disp), vmin=0, vmax=n_disp)

    fovea_ij = 100, 600
    
    time_budget = .2
    coarse_time_budget = .9 * time_budget