Пример #1
0
def planTransit(world, objectIndex, hand):
    globals = Globals(world)
    cspace = TransitCSpace(globals, hand)
    obj = world.rigidObject(objectIndex)
    robot = world.robot(0)
    qmin, qmax = robot.getJointLimits()

    #get the start config
    q0 = robot.getConfig()
    q0arm = [q0[i] for i in hand.armIndices]
    if not cspace.feasible(q0arm):
        print "Warning, arm start configuration is infeasible"
    #get the pregrasp config -- TODO: what if the ik solver doesn't work?
    qpregrasp = None
    qpregrasparm = None
    solver = hand.ikSolver(robot, obj.getTransform()[1], [0, 0, 1])
    print "Trying to find pregrasp config..."
    solver.setMaxIters(100)
    solver.setTolerance(1e-3)
    res = solver.solve()
    if res:
        qpregrasp = robot.getConfig()
        qpregrasparm = [qpregrasp[i] for i in hand.armIndices]
        if not cspace.feasible(qpregrasparm):
            print "Pregrasp config infeasible"
            cspace.close()
            return None
    if qpregrasp == None:
        print "Pregrasp solve failed"
        cspace.close()
        return None

    print "Planning transit motion to pregrasp config..."
    MotionPlan.setOptions(connectionThreshold=5.0, perturbationRadius=0.5)
    planner = MotionPlan(cspace, 'sbl')
    planner.setEndpoints(q0arm, qpregrasparm)
    iters = 0
    step = 10
    while planner.getPath() == None and iters < 1000:
        planner.planMore(step)
        iters += step
    cspace.close()
    if planner.getPath() == None:
        print "Failed finding transit path"
        return None
    print "Success, found path with", len(planner.getPath()), "milestones"

    #lift arm path to whole configuration space path
    path = []
    for qarm in planner.getPath():
        path.append(q0[:])
        for qi, i in zip(qarm, hand.armIndices):
            path[-1][i] = qi

    #add a path to the grasp configuration
    return path + [hand.open(path[-1], 0)]
Пример #2
0
def planFree(world, hand, qtarget):
    """Plans a free-space motion for the robot's arm from the current
    configuration to the destination qtarget"""
    globals = Globals(world)
    cspace = TransitCSpace(globals, hand)
    robot = world.robot(0)
    qmin, qmax = robot.getJointLimits()

    #get the start/goal config
    q0 = robot.getConfig()
    q0arm = [q0[i] for i in hand.armIndices]
    qtargetarm = [qtarget[i] for i in hand.armIndices]

    if not cspace.feasible(q0arm):
        print "Warning, arm start configuration is infeasible"
    if not cspace.feasible(qtargetarm):
        print "Warning, arm goal configuration is infeasible"

    print "Planning transit motion to target config..."
    MotionPlan.setOptions(connectionThreshold=5.0, perturbationRadius=0.5)
    planner = MotionPlan(cspace, 'sbl')
    planner.setEndpoints(q0arm, qtargetarm)
    iters = 0
    step = 10
    while planner.getPath() == None and iters < 1000:
        planner.planMore(step)
        iters += step
    cspace.close()
    if planner.getPath() == None:
        print "Failed finding transit path"
        return None
    print "Success"

    #lift arm path to whole configuration space path
    path = []
    for qarm in planner.getPath():
        path.append(q0[:])
        for qi, i in zip(qarm, hand.armIndices):
            path[-1][i] = qi
    return path
def testPlannerSuccessRate(N=100,
                           duration=10,
                           spawnFunc=lambda: kinkTest(0.0025, False)):
    import time
    import matplotlib.pyplot as plt
    finished = []
    for run in range(N):
        space, s, g = spawnFunc()
        space.eps = 1e-3
        if run == 0 and False:  #show space
            space.drawObstaclesMPL(plt.axes())
            plt.scatter([s[0], g[0]], [s[1], g[1]])
            plt.show()
        plan = MotionPlan(space, type='prm', knn=5)
        plan.setEndpoints(s, g)

        t0 = time.time()
        finished.append(None)
        while time.time() - t0 < duration:
            plan.planMore(5)
            if plan.getPath():
                finished[-1] = time.time() - t0
                print("Found path with", len(plan.getPath()), "milestones in",
                      time.time() - t0, "s")
                break
        if finished[-1] is None:
            print("Failed to find path in", duration, "s")
    import numpy as np
    finished = [v for v in finished if v != None]
    hist, edges = np.histogram(finished, 20, (0, duration))
    print(hist, edges)
    hist = hist * 100 / N
    chist = np.cumsum(hist)
    plt.bar(edges[:-1], 100 - chist, duration / 20)
    plt.xlabel('Time (s)')
    plt.ylabel('% failed')
    plt.xlim(0, duration)
    plt.ylim(0, 100)
    plt.savefig('histogram.png')
    plt.show()
Пример #4
0
def planTransfer(world, objectIndex, hand, shift):
    """Plan a transfer path for the robot given in world, which is currently
    holding the object indexed by objectIndex in the hand hand.
    
    The desired motion should translate the object by shift without rotating
    the object.
    """
    globals = Globals(world)
    obj = world.rigidObject(objectIndex)
    cspace = TransferCSpace(globals, hand, obj)
    robot = world.robot(0)
    qmin, qmax = robot.getJointLimits()

    #get the start config
    q0 = robot.getConfig()
    q0arm = [q0[i] for i in hand.armIndices]
    if not cspace.feasible(q0arm):
        print "Warning, arm start configuration is infeasible"
        print "TODO: Complete 2.a to bypass this error"
        raw_input()
        cspace.close()
        return None

    #TODO: get the ungrasp config using an IK solver
    qungrasp = None
    qungrasparm = None
    print "TODO: Complete 2.b to find a feasible ungrasp config"
    raw_input()
    solver = hand.ikSolver(robot, vectorops.add(obj.getTransform()[1], shift),
                           (0, 0, 1))

    #plan the transfer path between q0arm and qungrasparm
    print "Planning transfer motion to ungrasp config..."
    MotionPlan.setOptions(connectionThreshold=5.0, perturbationRadius=0.5)
    planner = MotionPlan(cspace, 'sbl')
    planner.setEndpoints(q0arm, qungrasparm)
    #TODO: do the planning
    print "TODO: Complete 2.c to find a feasible transfer path"
    raw_input()

    cspace.close()
    #lift arm path to whole configuration space path
    path = []
    for qarm in planner.getPath():
        path.append(q0[:])
        for qi, i in zip(qarm, hand.armIndices):
            path[-1][i] = qi

    qpostungrasp = hand.open(qungrasp, 1.0)
    return path + [qpostungrasp]
Пример #5
0
class CSpaceObstacleSolver:
    def __init__(self,
                 space,
                 x_bound=1.0,
                 y_bound=1.0,
                 milestones=(0, 0),
                 initial_points=4000):
        self.space = space
        #PRM planner
        MotionPlan.setOptions(type="prm",
                              knn=10,
                              connectionThreshold=0.05,
                              ignoreConnectedComponents=True)
        self.optimizingPlanner = False
        # we first plan a bit without goals just to have a good skeleton
        self.initial_points = initial_points
        self.x_bound = x_bound
        self.y_bound = y_bound
        self.milestones = milestones
        self.times = 0
        self.planner = MotionPlan(space)
        print('planning initial roadmap with {} points'.format(initial_points))
        self.planner.planMore(self.initial_points)
        self.connected = False
        # we now add each of the chosen points as a milestone:
        self.G = self.planner.getRoadmap()
        self.start_milestones = len(self.G[0])
        for milestone in self.milestones:
            self.planner.addMilestone(milestone)
        self.components = int(self.planner.getStats()['numComponents'])
        print(self.components)

        self.path = []
        self.G = None

    def get_adjacency_matrix_from_milestones(self):
        while (self.components > 1):
            print("Planning 100...")
            self.planner.planMore(100)
            self.path = self.planner.getPath()
            self.G = self.planner.getRoadmap()
            self.components = int(self.planner.getStats()['numComponents'])
            print(self.components)

        print(
            'PRM connecting all milestones found - computing adjacency matrix')
        pathDict = dict()

        self.adjacency_matrix = np.zeros(shape=(len(self.milestones),
                                                len(self.milestones)))
        self.adjacency_matrix[:, :] = np.inf
        for i, milestone1 in tqdm(
                enumerate(
                    range(self.start_milestones,
                          self.start_milestones + 1 + len(self.milestones)))):
            #             print(self.G[0][milestone1])
            for j, milestone2 in enumerate(
                    range(milestone1 + 1,
                          self.start_milestones + len(self.milestones))):
                j = j + i + 1
                path = self.planner.getPath(milestone1, milestone2)
                cost = self.planner.pathCost(path)
                self.adjacency_matrix[i, j] = cost
                self.adjacency_matrix[j, i] = cost
                pathDict[i, j] = pathDict[j, i] = path

        #         print((i,j),(j,i))
        print('calculated all distances')
        for i in range(self.adjacency_matrix.shape[0]):
            self.adjacency_matrix[i, i] = 0

        return self.adjacency_matrix, pathDict
Пример #6
0
class CSpaceObstacleProgram(GLProgram):
    def __init__(self, space, start=(0.1, 0.5), goal=(0.9, 0.5)):
        GLProgram.__init__(self)
        self.space = space
        #PRM planner
        MotionPlan.setOptions(type="prm", knn=10, connectionThreshold=0.1)
        self.optimizingPlanner = False

        #FMM* planner
        #MotionPlan.setOptions(type="fmm*")
        #self.optimizingPlanner = True

        #RRT planner
        #MotionPlan.setOptions(type="rrt",perturbationRadius=0.25,bidirectional=True)
        #self.optimizingPlanner = False

        #RRT* planner
        #MotionPlan.setOptions(type="rrt*")
        #self.optimizingPlanner = True

        #random-restart RRT planner
        #MotionPlan.setOptions(type="rrt",perturbationRadius=0.25,bidirectional=True,shortcut=True,restart=True,restartTermCond="{foundSolution:1,maxIters:1000}")
        #self.optimizingPlanner = True

        #OMPL planners:
        #Tested to work fine with OMPL's prm, lazyprm, prm*, lazyprm*, rrt, rrt*, rrtconnect, lazyrrt, lbtrrt, sbl, bitstar.
        #Note that lbtrrt doesn't seem to continue after first iteration.
        #Note that stride, pdst, and fmt do not work properly...
        #MotionPlan.setOptions(type="ompl:rrt",suboptimalityFactor=0.1,knn=10,connectionThreshold=0.1)
        #self.optimizingPlanner = True

        self.planner = MotionPlan(space)
        self.start = start
        self.goal = goal
        self.planner.setEndpoints(start, goal)
        self.path = []
        self.G = None

    def keyboardfunc(self, key, x, y):
        if key == ' ':
            if self.optimizingPlanner or not self.path:
                print "Planning 1..."
                self.planner.planMore(1)
                self.path = self.planner.getPath()
                self.G = self.planner.getRoadmap()
                self.refresh()
        elif key == 'p':
            if self.optimizingPlanner or not self.path:
                print "Planning 100..."
                self.planner.planMore(100)
                self.path = self.planner.getPath()
                self.G = self.planner.getRoadmap()
                self.refresh()

    def display(self):
        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        glOrtho(0, 1, 1, 0, -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

        glDisable(GL_LIGHTING)
        self.space.drawObstaclesGL()
        if self.path:
            #draw path
            glColor3f(0, 1, 0)
            glBegin(GL_LINE_STRIP)
            for q in self.path:
                glVertex2f(q[0], q[1])
            glEnd()
            for q in self.path:
                self.space.drawRobotGL(q)
        else:
            self.space.drawRobotGL(self.start)
            self.space.drawRobotGL(self.goal)

        if self.G:
            #draw graph
            V, E = self.G
            glEnable(GL_BLEND)
            glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
            glColor4f(0, 0, 0, 0.5)
            glPointSize(3.0)
            glBegin(GL_POINTS)
            for v in V:
                glVertex2f(v[0], v[1])
            glEnd()
            glColor4f(0.5, 0.5, 0.5, 0.5)
            glBegin(GL_LINES)
            for (i, j) in E:
                glVertex2f(V[i][0], V[i][1])
                glVertex2f(V[j][0], V[j][1])
            glEnd()
            glDisable(GL_BLEND)
Пример #7
0
class CSpaceObstacleProgram(GLProgram):
    def __init__(self,
                 space,
                 start=(0.1, 0.5),
                 goal=(0.9, 0.5),
                 x_bound=1.0,
                 y_bound=1.0,
                 milestones=(0, 0),
                 initial_points=1000):
        GLProgram.__init__(self)
        self.space = space
        #PRM planner
        MotionPlan.setOptions(type="prm",
                              knn=10,
                              connectionThreshold=1,
                              ignoreConnectedComponents=True)
        self.optimizingPlanner = False
        # we first plan a bit without goals just to have a good skeleton
        self.initial_points = initial_points
        self.x_bound = x_bound
        self.y_bound = y_bound
        self.milestones = milestones
        self.times = 0
        self.planner = MotionPlan(space)
        print('planning initial roadmap with {} points'.format(initial_points))
        self.planner.planMore(self.initial_points)
        self.connected = False
        #FMM* planner
        #MotionPlan.setOptions(type="fmm*")
        #self.optimizingPlanner = True

        #RRT planner
        #MotionPlan.setOptions(type="rrt",perturbationRadius=0.25,bidirectional=True)
        #self.optimizingPlanner = False

        #         RRT* planner
        #         MotionPlan.setOptions(type="rrt*")
        #         self.optimizingPlanner = True

        #random-restart RRT planner
        #MotionPlan.setOptions(type="rrt",perturbationRadius=0.25,bidirectional=True,shortcut=True,restart=True,restartTermCond="{foundSolution:1,maxIters:1000}")
        #self.optimizingPlanner = True

        #OMPL planners:
        #Tested to work fine with OMPL's prm, lazyprm, prm*, lazyprm*, rrt, rrt*, rrtconnect, lazyrrt, lbtrrt, sbl, bitstar.
        #Note that lbtrrt doesn't seem to continue after first iteration.
        #Note that stride, pdst, and fmt do not work properly...
        #MotionPlan.setOptions(type="ompl:rrt",suboptimalityFactor=0.1,knn=10,connectionThreshold=0.1)
        #self.optimizingPlanner = True
        # we then add start, goal and milestones
        self.start = start
        self.goal = goal
        #         self.planner.setEndpoints(start,goal)
        # we now add each of the chosen points as a milestone:
        self.G = self.planner.getRoadmap()
        self.start_milestones = len(self.G[0])
        print(self.start_milestones)
        for milestone in self.milestones:
            self.planner.addMilestone(milestone)
        self.components = int(self.planner.getStats()['numComponents'])
        print(self.components)
        self.G = self.planner.getRoadmap()
        self.end_milestones = len(self.G[0])
        print(self.end_milestones)
        #         self.planner.addMilestone(self.start)
        #         self.planner.addMilestone(self.goal)
        self.path = []
        self.G = None

    def keyboardfunc(self, key, x, y):
        if key == ' ':
            if ((self.optimizingPlanner or not self.path)
                    or (self.components > 1)):
                print("Planning 1...")
                self.planner.planMore(1)
                self.path = self.planner.getPath()
                self.G = self.planner.getRoadmap()
                self.components = int(self.planner.getStats()['numComponents'])
                print(self.components)

                self.refresh()
        elif key == 'p':
            if ((self.optimizingPlanner or not self.path)
                    or (self.components > 1)):
                print("Planning 100...")
                self.planner.planMore(1000)
                self.path = self.planner.getPath()
                self.G = self.planner.getRoadmap()
                self.components = int(self.planner.getStats()['numComponents'])
                print(self.components)
                self.paths = []
                #                 for i in range(self.start_milestones,self.end_milestones):
                #                     for j in range(i,self.end_milestones):
                #                         print('getting paths')
                #                         self.paths.append( self.planner.getPath(i,j))
                self.refresh()
#         elif key=='g':
#             adjacency_matrix = np.zeros(shape = (len(self.milestones),len(self.milestones)))
#             adjacency_matrix[:,:] = np.inf
#             if(self.components == 1):
#                 for i,milestone1 in tqdm(enumerate(range(self.start_milestones+1,len(self.milestones)))):
#                     for j,milestone2 in enumerate(range(milestone1+1,len(self.milestones))):
#                         path = self.planner.getPath(milestone1,milestone2)
#                         cost = self.planner.pathCost(path)
#                         adjacency_matrix[i,j] = cost
#                         adjacency_matrix[j,i] = cost
#             print('calculated all distances')
#             return adjacency_matrix

    def display(self):
        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        glOrtho(0, self.x_bound, self.y_bound, 0, -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

        glDisable(GL_LIGHTING)
        self.space.drawObstaclesGL()
        if ((self.path) and (self.components == 1)):
            self.paths = []
            for i in range(self.start_milestones, self.end_milestones):
                for j in range(i + 1, self.end_milestones):
                    print('getting paths')
                    self.paths.append(self.planner.getPath(i, j))
            #draw path
#             glColor3f(0,1,0)
#             glBegin(GL_LINE_STRIP)
            self.colors = []
            for i, path in enumerate(self.paths):
                if (len(self.colors) < i + 1):
                    self.colors.append(
                        [np.random.rand(),
                         np.random.rand(),
                         np.random.rand()])
                glColor3f(*self.colors[i])
                glBegin(GL_LINE_STRIP)
                for q in path:
                    glVertex2f(q[0], q[1])
                glEnd()


#             for path in self.paths:
#                 for q in path:
#                     self.space.drawRobotGL(q)
            for milestone in self.milestones:
                self.space.drawRobotGL(milestone)

        else:
            for milestone in self.milestones:
                self.space.drawRobotGL(milestone)
            pass

        if self.G:
            #draw graph
            V, E = self.G
            glEnable(GL_BLEND)
            glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
            glColor4f(0, 0, 0, 0.5)
            glPointSize(3.0)
            glBegin(GL_POINTS)
            for v in V:
                glVertex2f(v[0], v[1])
            glEnd()
            glColor4f(0.5, 0.5, 0.5, 0.5)
            glBegin(GL_LINES)
            for (i, j) in E:
                glVertex2f(V[i][0], V[i][1])
                glVertex2f(V[j][0], V[j][1])
            glEnd()
            glDisable(GL_BLEND)