def main(): print("poop") prefix_500 = "500" prefix_1000 = "1000" prefix_2000 = "2000" suffix_start_count = 1 suffix_end_count = 10 design_kmer_list = kmers.get_design_kmers() for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_500 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping(sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_1000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping(sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_2000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping(sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list)
def main(): print("poop") prefix_500 = "500" prefix_1000 = "1000" prefix_2000 = "2000" suffix_start_count = 1 suffix_end_count = 10 design_kmer_list = kmers.get_design_kmers() for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_500 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping( sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_1000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping( sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_2000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) mapping_list = BruteForceMapping.get_brute_force_mapping( sequence_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, mapping_list)
def main(): prefix_500 = "500" prefix_1000 = "1000" prefix_2000 = "2000" suffix_start_count = 1 suffix_end_count = 10 design_kmer_list = kmers.get_design_kmers() use_cluster_size_hard_stop = False for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_500 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump( cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching( consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_1000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump( cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching( consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_2000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump( cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching( consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict)
def main(): sequence_kmer_list = kmers.get_random_sequence_kmers(1000) design_kmer_list = kmers.get_design_kmers() mapping_list = get_bipartite_matching(sequence_kmer_list, design_kmer_list) print(len(mapping_list))
def main(): sequence_kmer_list = kmers.get_random_sequence_kmers(1000) design_kmer_list = kmers.get_design_kmers() isClusterSizeHardStop = True cluster_dict = get_cluster_dict(sequence_kmer_list, design_kmer_list, isClusterSizeHardStop)
def main(): sequence_kmer_list = kmers.get_random_sequence_kmers(1000) design_kmer_list = kmers.get_design_kmers() cluster_dict = get_cluster_dict(sequence_kmer_list, design_kmer_list) pickle.dump(cluster_dict, open("cluster_dict.p", "wb"))
def main(): design_kmer_list = kmers.get_design_kmers() isClusterSizeHardStop = False input_file_name = "500_1" sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = get_cluster_dict(sequence_kmer_list, design_kmer_list, isClusterSizeHardStop)
def main(): prefix_500 = "500" prefix_1000 = "1000" prefix_2000 = "2000" suffix_start_count = 1 suffix_end_count = 10 design_kmer_list = kmers.get_design_kmers() use_cluster_size_hard_stop = False for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_500 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump(cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching(consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_1000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump(cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching(consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict) for suffix_count in range(suffix_start_count, suffix_end_count + 1): input_file_name = prefix_2000 + '_' + str(suffix_count) sequence_kmer_list = kmers.get_sequence_kmers(input_file_name) cluster_dict = Clustering.get_cluster_dict(sequence_kmer_list, design_kmer_list, use_cluster_size_hard_stop) pickle.dump(cluster_dict, open("clusters_no_hard_stop" + input_file_name + ".p", "wb")) consensus_kmer_list = cluster_dict.keys() consensus_mapping_list = get_bipartite_matching(consensus_kmer_list, design_kmer_list) output_seq_kmer_mapping_list(input_file_name, consensus_mapping_list, cluster_dict)