Пример #1
0
def test(data, k):
   random.shuffle(data)
   pts, labels = column(data, 0), column(data, 1)

   trainingData = pts[:800]
   trainingLabels = labels[:800]
   testData = pts[800:]
   testLabels = labels[800:]

   f = knn.makeKNNClassifier(trainingData, trainingLabels, k, knn.euclideanDistance)
   correct = 0.0
   total = len(testLabels)

   for (point, label) in zip(testData, testLabels):
      if f(point) == label:
         correct += 1

   return correct/total
Пример #2
0
def test(data, k):
    random.shuffle(data)
    pts, labels = column(data, 0), column(data, 1)

    trainingData = pts[:800]
    trainingLabels = labels[:800]
    testData = pts[800:]
    testLabels = labels[800:]

    f = knn.makeKNNClassifier(trainingData, trainingLabels, k,
                              knn.euclideanDistance)
    correct = 0.0
    total = len(testLabels)

    for (point, label) in zip(testData, testLabels):
        if f(point) == label:
            correct += 1

    return correct / total
Пример #3
0
def test(data, k):
   random.seed(2003892049)
   random.shuffle(data)
   pts, labels = column(data, 0), column(data, 1)

   trainingData = pts[:800]
   trainingLabels = labels[:800]
   testData = pts[800:]
   testLabels = labels[800:]

   f = knn.makeKNNClassifier(trainingData, trainingLabels, k, knn.mEp4)
   correct = 0.0
   total = len(testLabels)
   t1 = time.time()
   for (point, label) in zip(testData, testLabels):
      if f(point) == label:
         correct += 1
      print "Total time: {0} s\r".format(round(time.time() - t1, 2)),
      sys.stdout.flush()
   return correct/total