def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor], return_transform: bool = False) -> UnionType: """ Wrapper for adjust_brightness for Torchvision-like param settings. Args: input (torch.Tensor): Image/Input to be adjusted in the shape of (*, N). brightness_factor (Union[float, torch.Tensor]): Brightness adjust factor per element in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a white image, while any other number modify the brightness. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype( input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_brightness( input, params['brightness_factor'].to(input.dtype) - 1) if return_transform: identity: torch.Tensor = torch.eye(3, device=input.device, dtype=input.dtype).repeat( input.shape[0], 1, 1) return transformed, identity return transformed
def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: """ Wrapper for adjust_brightness for Torchvision-like param settings. Args: input (torch.Tensor): Image/Input to be adjusted in the shape of (*, N). params (Dict[str, torch.Tensor]): - params['brightness_factor']: Brightness adjust factor per element in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a white image, while any other number modify the brightness. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_brightness(input, params['brightness_factor'].to(input.dtype)) return transformed