def random_color(tensor, p=.5): ''' brightness_factor (Union[float, torch.Tensor]) – Brightness adjust factor per element in the batch. 0 does not modify the input image while any other number modify the brightness. contrast_factor (Union[float, torch.Tensor]) – Contrast adjust factor per element in the batch. 0 generates a compleatly black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. hue_factor (float):0 means no shift. Therefore, both -PI and PI will give an image with complementary colors while 0 gives the original image. saturation_factor (float) – How much to adjust the saturation. 0 will give a black order=0 is brightness, 1 is contrast, 2 is saturation, 4 is hue. ''' gamma = torch.ones(tensor.shape[1]) gamma = np.random.uniform(0.75, 1.25) random_number = np.random.uniform() if random_number < p: for i in range(tensor.shape[0]): tensor[i] = kornia.adjust_gamma(tensor[i], gamma) # hue=torch.ones(tensor.shape[1]) # hue=np.random.uniform(-0.4,0.4) # random_number=np.random.uniform() # if random_number<p: # for i in range(tensor.shape[0]): # tensor[i]=kornia.adjust_hue(tensor[i],hue) # contrast=torch.ones(tensor.shape[1]) # contrast=np.random.uniform(0.6,1.4) # random_number=np.random.uniform() # if random_number<p: # for i in range(tensor.shape[0]): # tensor[i]=kornia.adjust_contrast(tensor[i],contrast) # # brightness=torch.ones(tensor.shape[1]) # brightness=np.random.uniform(-0.4,0.4) # random_number=np.random.uniform() # if random_number<p: # for i in range(tensor.shape[0]): # tensor[i]=kornia.adjust_brightness(tensor[i],brightness) return tensor
def Gamma(x, alpha, beta): # alpha (1.0, 3.0), beta (1.0, 3.0) return kornia.adjust_gamma(x, gamma=alpha, gain=beta)
############################# # Show original imshow(x_rgb) ############################# # Adjust Brightness x_brightness: torch.Tensor = kornia.adjust_brightness(x_rgb, 0.6) imshow(x_brightness) ############################# # Adjust Contrast x_contrast: torch.Tensor = kornia.adjust_contrast(x_rgb, 0.2) imshow(x_contrast) ############################# # Adjust Gamma x_gamma: torch.Tensor = kornia.adjust_gamma(x_rgb, gamma=3., gain=1.5) imshow(x_gamma) ############################# # Adjust Saturation x_saturated: torch.Tensor = kornia.adjust_saturation(x_rgb, 0.2) imshow(x_saturated) ############################# # Adjust Hue x_hue: torch.Tensor = kornia.adjust_hue(x_rgb, 0.5) imshow(x_hue)
def Gamma(x, v): return kornia.adjust_gamma(x, v)