def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.rgb_to_bgr(data) data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 actual = op_script(data) expected = kornia.rgb_to_bgr(data) assert_allclose(actual, expected)
def test_bgr(self, device): a_val: float = 1. x_rgb = torch.rand(3, 4, 4).to(device) x_bgr = kornia.rgb_to_bgr(x_rgb) x_rgba = kornia.rgb_to_rgba(x_rgb, a_val) x_rgba_new = kornia.bgr_to_rgba(x_bgr, a_val) assert_allclose(x_rgba, x_rgba_new)
def test_back_and_forth(self, device): data_bgr = torch.rand(1, 3, 3, 2).to(device) data_rgb = kornia.bgr_to_rgb(data_bgr) data_bgr_new = kornia.rgb_to_bgr(data_rgb) assert_allclose(data_bgr, data_bgr_new)
def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.rgb_to_bgr(data)