Пример #1
0
 def respond_confirm_relation_from_literature(self, content):
     """Confirm a protein-protein interaction given subject, object, verb"""
     try:
         subj, obj, stmt_type, filter_agents = self._get_query_info(content)
         finder = \
             self.msa.find_mechanism_from_input(subj, obj, None, stmt_type,
                                                ev_limit=5, persist=False,
                                                timeout=5,
                                                filter_agents=filter_agents)
         self._send_provenance_async(finder,
             'confirming that some statements match')
     except MSALookupError as mle:
         return self.make_failure(mle.args[0])
     stmts = finder.get_statements(timeout=20)
     if stmts is None:
         # TODO: Handle this more gracefully, if possible.
         return self.make_failure('MISSING_MECHANISM')
     num_stmts = len(stmts)
     description = finder.describe(include_negative=False) \
         if stmts else None
     #self.say(description)
     resp = KQMLPerformative('SUCCESS')
     resp.set('some-relations-found', 'TRUE' if num_stmts else 'FALSE')
     resp.set('num-relations-found', str(num_stmts))
     resp.set('dump-limit', str(DUMP_LIMIT))
     resp.sets('suggestion', description if description else 'nil')
     return resp
Пример #2
0
    def respond_find_relations_from_literature(self, content):
        """Find statements matching some subject, verb, object information."""
        try:
            subj, obj, stmt_type, filter_agents = self._get_query_info(content)
            finder = \
                self.msa.find_mechanism_from_input(subj, obj, None, stmt_type,
                                                   ev_limit=3, persist=False,
                                                   timeout=5,
                                                   filter_agents=filter_agents)
            self._send_provenance_async(finder,
                                        'finding statements that match')
        except MSALookupError as mle:
            return self.make_failure(mle.args[0])

        stmts = finder.get_statements(timeout=15)
        if stmts is None:
            # Calling this success may be a bit ambitious.
            resp = KQMLPerformative('SUCCESS')
            resp.set('status', 'WORKING')
            resp.set('entities-found', 'nil')
            resp.set('num-relations-found', '0')
            resp.set('dump-limit', str(DUMP_LIMIT))
            return resp

        agents = finder.get_other_agents()
        description = finder.describe(include_negative=False)
        #self.say(description)
        resp = KQMLPerformative('SUCCESS')
        resp.set('status', 'FINISHED')
        resp.set('entities-found', self.make_cljson(agents))
        resp.set('num-relations-found', str(len(stmts)))
        resp.set('dump-limit', str(DUMP_LIMIT))
        resp.sets('suggestion', description)
        resp.set('top-stmts', self.make_cljson(stmts[:10]))
        return resp
Пример #3
0
    def respond_phosphorylation_activating(self, content):
        """Return response content to phosphorylation_activating request."""
        if not CAN_CHECK_STATEMENTS:
            return self.make_failure(
                'NO_KNOWLEDGE_ACCESS',
                'Cannot access the database through the web api.')
        heading = content.head()
        m = re.match(r'(\w+)-(\w+)', heading)
        if m is None:
            return self.make_failure('UNKNOWN_ACTION')
        action, polarity = [s.lower() for s in m.groups()]
        target_cljson = content.get('target')
        if target_cljson is None or not len(target_cljson):
            return self.make_failure('MISSING_TARGET')
        agent = self.get_agent(target_cljson)
        # This is a bug in the BA that we can handle here
        if isinstance(agent, list):
            agent = agent[0]
        logger.debug('Found agent (target): %s.' % agent.name)
        site = content.gets('site')
        if site is None:
            residue = None
            position = None
        else:
            try:
                residue, position = site.split('-')
            except:
                return self.make_failure('INVALID_SITE')

        finder = self.msa.find_phos_activeforms(agent,
                                                residue=residue,
                                                position=position,
                                                action=action,
                                                polarity=polarity)
        stmts = finder.get_statements()

        logger.info("Found %d matching statements." % len(stmts))
        if not len(stmts):
            return self.make_failure(
                'MISSING_MECHANISM',
                "Could not find statement matching phosphorylation activating "
                "%s, %s, %s, %s." %
                (agent.name, residue, position, 'phosphorylation'))
        else:
            description = finder.describe(include_negative=False)
            # self.say(description)
            msg = "phosphorylation at %s%s activates %s." \
                  % (residue, position, agent.name)
            self.send_provenance_for_stmts(
                stmts,
                msg,
                ev_counts=finder.get_ev_totals(),
                source_counts=finder.get_source_counts())
            msg = KQMLPerformative('SUCCESS')
            msg.set('is-activating', 'TRUE')
            msg.sets('suggestion', description)
            return msg
Пример #4
0
    def respond_build_model(self, content):
        """Return response content to build-model request."""
        descr = content.gets('description')
        descr_format = content.gets('format')
        no_display = content.get('no-display')
        if not descr_format or descr_format == 'ekb':
            res = self.mra.build_model_from_ekb(descr)
        elif descr_format == 'indra_json':
            res = self.mra.build_model_from_json(descr)
        else:
            err_msg = 'Invalid description format: %s' % descr_format
            raise InvalidModelDescriptionError(err_msg)
        if res.get('error'):
            raise InvalidModelDescriptionError(res.get('error'))
        model_id = res.get('model_id')
        if model_id is None:
            raise InvalidModelDescriptionError()
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', str(model_id))
        # Add the INDRA model json
        model = res.get('model')
        if model and (descr_format == 'ekb' or not descr_format):
            self.send_background_support(model)
        model_msg = encode_indra_stmts(model)
        msg.sets('model', model_msg)
        # Add the diagrams
        diagrams = res.get('diagrams')
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)

        # Indicate whether the goal has been explained
        has_expl = res.get('has_explanation')
        if has_expl is not None:
            msg.set('has_explanation', str(has_expl).upper())

        # Send out various model diagnosis messages
        self.send_model_diagnoses(res)

        # Once we sent out the diagnosis messages, we make sure we keep
        # track of whether we have an explanation
        if has_expl:
            self.have_explanation = True

        # Analyze the model for issues
        # Report ambiguities
        ambiguities = res.get('ambiguities')
        if ambiguities:
            ambiguities_msg = get_ambiguities_msg(ambiguities)
            msg.set('ambiguities', ambiguities_msg)
        return msg
Пример #5
0
    def respond_get_common(self, content):
        """Find the common up/down streams of a protein."""
        # TODO: This entire function could be part of the MSA.
        if not CAN_CHECK_STATEMENTS:
            return self.make_failure(
                'NO_KNOWLEDGE_ACCESS',
                'Cannot access the database through the web api.'
                )
        genes_ekb = content.gets('genes')
        agents = _get_agents(genes_ekb)
        if len(agents) < 2:
            return self.make_failure('NO_TARGET',
                                     'Only %d < 2 agents given.' % len(agents))

        direction = content.gets('up-down')
        logger.info("Got genes: %s and direction %s." % (agents, direction))

        # Choose some parameters based on direction.
        if direction == 'ONT::MORE':
            method = 'common_upstreams'
            prefix = 'up'
        elif direction == 'ONT::SUCCESSOR':
            method = 'common_downstreams'
            prefix = 'down'
        else:
            # TODO: With the new MSA we could handle common neighbors.
            return self.make_failure("UNKNOWN_ACTION", direction)

        # Find the commonalities.
        try:
            finder = self.msa.find_mechanisms(method, *agents)
        except EntityError as e:
            return self.make_failure("MISSING_TARGET", e.args[0])

        # Get post statements to provenance.
        if len(agents) > 2:
            name_list = ', '.join(ag.name for ag in agents[:-1]) + ','
        else:
            name_list = agents[0].name
        name_list += ' and ' + agents[-1].name
        msg = ('%sstreams of ' % prefix).capitalize() + name_list
        self.send_provenance_for_stmts(finder.get_statements(), msg,
                                       ev_counts=finder.get_ev_totals())

        # Create the reply
        resp = KQMLPerformative('SUCCESS')
        gene_list = KQMLList()
        for gene in finder.get_common_entities():
            gene_list.append(gene)
        resp.set('commons', gene_list)
        resp.sets('prefix', prefix)
        return resp
Пример #6
0
    def respond_get_common(self, content):
        """Find the common up/down streams of a protein."""
        # TODO: This entire function could be part of the MSA.
        if not CAN_CHECK_STATEMENTS:
            return self.make_failure(
                'NO_KNOWLEDGE_ACCESS',
                'Cannot access the database through the web api.')
        genes_cljson = content.get('genes')
        agents = [self.get_agent(ag) for ag in genes_cljson]
        if len(agents) < 2:
            return self.make_failure('NO_TARGET',
                                     'Only %d < 2 agents given.' % len(agents))

        direction = content.gets('up-down')
        logger.info("Got genes: %s and direction %s." % (agents, direction))

        # Choose some parameters based on direction.
        if direction == 'ONT::MORE':
            method = 'common_upstreams'
            prefix = 'up'
        elif direction == 'ONT::SUCCESSOR':
            method = 'common_downstreams'
            prefix = 'down'
        else:
            # TODO: With the new MSA we could handle common neighbors.
            return self.make_failure("UNKNOWN_ACTION", direction)

        # Find the commonalities.
        try:
            finder = self.msa.find_mechanisms(method, *agents)
        except EntityError as e:
            return self.make_failure("MISSING_TARGET", e.args[0])

        # Get post statements to provenance.
        if len(agents) > 2:
            name_list = ', '.join(ag.name for ag in agents[:-1]) + ','
        else:
            name_list = agents[0].name
        name_list += ' and ' + agents[-1].name
        msg = ('%sstreams of ' % prefix).capitalize() + name_list
        self.send_provenance_for_stmts(
            finder.get_statements(),
            msg,
            ev_counts=finder.get_ev_totals(),
            source_counts=finder.get_source_counts())

        # Create the reply
        resp = KQMLPerformative('SUCCESS')
        agents = finder.get_other_agents()
        resp.set('entities-found', self.make_cljson(agents))
        resp.sets('prefix', prefix)
        return resp
Пример #7
0
 def register(self):
     if self.name is not None:
         perf = KQMLPerformative('register')
         perf.set('name', self.name)
         if self.group_name is not None:
             try:
                 if self.group_name.startswith('('):
                     perf.sets('group', self.group_name)
                 else:
                     perf.set('group', self.group_name)
             except IOError:
                 logger.error('bad group name: ' + self.group_name)
         self.send(perf)
Пример #8
0
 def register(self):
     if self.name is not None:
         perf = KQMLPerformative('register')
         perf.set('name', self.name)
         if self.group_name is not None:
             try:
                 if self.group_name.startswith('('):
                     perf.sets('group', self.group_name)
                 else:
                     perf.set('group', self.group_name)
             except IOError:
                 logger.error('bad group name: ' + self.group_name)
         self.send(perf)
Пример #9
0
    def respond_model_remove_mechanism(self, content):
        """Return response content to model-remove-mechanism request."""
        model_id = self._get_model_id(content)
        descr = content.get('description')
        js = json.dumps(self.converter.cl_to_json(descr))
        no_display = content.get('no-display')
        try:
            res = self.mra.remove_mechanism(js, model_id)
        except Exception as e:
            raise InvalidModelDescriptionError(e)
        model_id = res.get('model_id')
        if model_id is None:
            raise InvalidModelDescriptionError('Could not find model id.')
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', str(model_id))
        # Add the INDRA model json
        model = res.get('model')
        model_msg = encode_indra_stmts(model)
        msg.set('model', model_msg)

        # Handle empty model
        if not model:
            self.send_clean_model()

        # Get the action and add it to the message
        removed = res.get('removed')
        if not removed:
            msg = self.make_failure('REMOVE_FAILED')
            return msg
        else:
            actionl = KQMLList('remove_stmts')
            actionl.set('statements', encode_indra_stmts(removed))
            msg.set('action', actionl)

        # Add the diagram
        diagrams = res.get('diagrams')
        logger.info(diagrams)
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)
        return msg
Пример #10
0
    def respond_model_remove_mechanism(self, content):
        """Return response content to model-remove-mechanism request."""
        ekb = content.gets('description')
        model_id = self._get_model_id(content)
        no_display = content.get('no-display')
        try:
            res = self.mra.remove_mechanism(ekb, model_id)
        except Exception as e:
            raise InvalidModelDescriptionError(e)
        model_id = res.get('model_id')
        if model_id is None:
            raise InvalidModelDescriptionError('Could not find model id.')
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', str(model_id))
        # Add the INDRA model json
        model = res.get('model')
        model_msg = encode_indra_stmts(model)
        msg.sets('model', model_msg)

        # Handle empty model
        if not model:
            self.send_clean_model()

        # Get the action and add it to the message
        removed = res.get('removed')
        if not removed:
            msg = self.make_failure('REMOVE_FAILED')
            return msg
        else:
            actionl = KQMLList('remove_stmts')
            actionl.sets('statements', encode_indra_stmts(removed))
            msg.set('action', actionl)

        # Add the diagram
        diagrams = res.get('diagrams')
        logger.info(diagrams)
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)
        return msg
Пример #11
0
 def respond_model_has_mechanism(self, content):
     """Return response content to model-has-mechanism request."""
     ekb = content.gets('description')
     model_id = self._get_model_id(content)
     try:
         res = self.mra.has_mechanism(ekb, model_id)
     except Exception as e:
         raise InvalidModelDescriptionError(e)
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(model_id))
     # Add TRUE or FALSE for has-mechanism
     has_mechanism_msg = 'TRUE' if res['has_mechanism'] else 'FALSE'
     msg.set('has-mechanism', has_mechanism_msg)
     query = res.get('query')
     if query:
         query_msg = encode_indra_stmts([query])
         msg.sets('query', query_msg)
     return msg
Пример #12
0
 def respond_has_mechanism(self, content):
     """Return response content to model-has-mechanism request."""
     ekb = content.gets('description')
     model_id = self._get_model_id(content)
     try:
         res = self.mra.has_mechanism(ekb, model_id)
     except Exception as e:
         raise InvalidModelDescriptionError(e)
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(model_id))
     # Add TRUE or FALSE for has-mechanism
     has_mechanism_msg = 'TRUE' if res['has_mechanism'] else 'FALSE'
     msg.set('has-mechanism', has_mechanism_msg)
     query = res.get('query')
     if query:
         query_msg = encode_indra_stmts([query])
         msg.sets('query', query_msg)
     return msg
Пример #13
0
 def respond_build_model(self, content):
     """Return response content to build-model request."""
     descr = content.gets('description')
     descr_format = content.gets('format')
     no_display = content.get('no-display')
     if not descr_format or descr_format == 'ekb':
         res = self.mra.build_model_from_ekb(descr)
     elif descr_format == 'indra_json':
         res = self.mra.build_model_from_json(descr)
     else:
         err_msg = 'Invalid description format: %s' % descr_format
         raise InvalidModelDescriptionError(err_msg)
     if res.get('error'):
         raise InvalidModelDescriptionError(res.get('error'))
     model_id = res.get('model_id')
     if model_id is None:
         raise InvalidModelDescriptionError()
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(model_id))
     # Add the INDRA model json
     model = res.get('model')
     if model:
         self.send_background_support(model)
     model_msg = encode_indra_stmts(model)
     msg.sets('model', model_msg)
     # Add the diagrams
     diagrams = res.get('diagrams')
     if not no_display:
         if diagrams:
             rxn_diagram = diagrams.get('reactionnetwork')
             if rxn_diagram:
                 msg.sets('diagram', rxn_diagram)
             self.send_display_model(diagrams)
     ambiguities = res.get('ambiguities')
     if ambiguities:
         ambiguities_msg = get_ambiguities_msg(ambiguities)
         msg.set('ambiguities', ambiguities_msg)
     return msg
Пример #14
0
 def respond_remove_mechanism(self, content):
     """Return response content to model-remove-mechanism request."""
     ekb = content.gets('description')
     model_id = self._get_model_id(content)
     no_display = content.get('no-display')
     try:
         res = self.mra.remove_mechanism(ekb, model_id)
     except Exception as e:
         raise InvalidModelDescriptionError(e)
     model_id = res.get('model_id')
     if model_id is None:
         raise InvalidModelDescriptionError('Could not find model id.')
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(model_id))
     # Add the INDRA model json
     model = res.get('model')
     model_msg = encode_indra_stmts(model)
     msg.sets('model', model_msg)
     # Add the removed statements
     removed = res.get('removed')
     if removed:
         removed_msg = encode_indra_stmts(removed)
         msg.sets('removed', removed_msg)
     # Add the diagram
     diagrams = res.get('diagrams')
     if not no_display:
         if diagrams:
             rxn_diagram = diagrams.get('reactionnetwork')
             if rxn_diagram:
                 msg.sets('diagram', rxn_diagram)
             self.send_display_model(rxn_diagram)
     return msg
Пример #15
0
    def respond_model_undo(self, content):
        """Return response content to model-undo request."""
        res = self.mra.model_undo()
        no_display = content.get('no-display')
        model_id = res.get('model_id')
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', 'NIL' if model_id is None else str(model_id))
        # Add the INDRA model json
        model = res.get('model')

        # Handle empty model
        if not model:
            self.send_clean_model()

        model_msg = encode_indra_stmts(model)
        msg.sets('model', model_msg)
        # Get the action and add it to the message
        action = res.get('action')
        actionl = KQMLList()
        # Here we handle no action as effectively an empty remove action
        if action['action'] in ('no_op', 'remove_stmts'):
            actionl.append('remove_stmts')
            actionl.sets(
                'statements',
                encode_indra_stmts(action['statements'])
                )
        msg.set('action', actionl)

        # Add the diagram
        diagrams = res.get('diagrams')
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)
        return msg
Пример #16
0
    def respond_model_undo(self, content):
        """Return response content to model-undo request."""
        res = self.mra.model_undo()
        no_display = content.get('no-display')
        model_id = res.get('model_id')
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', 'NIL' if model_id is None else str(model_id))
        # Add the INDRA model json
        model = res.get('model')

        # Handle empty model
        if not model:
            self.send_clean_model()

        model_msg = encode_indra_stmts(model)
        msg.set('model', model_msg)
        # Get the action and add it to the message
        action = res.get('action')
        actionl = KQMLList()
        # Here we handle no action as effectively an empty remove action
        if action['action'] in ('no_op', 'remove_stmts'):
            actionl.append('remove_stmts')
            actionl.set(
                'statements',
                encode_indra_stmts(action['statements'])
                )
        msg.set('action', actionl)

        # Add the diagram
        diagrams = res.get('diagrams')
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)
        return msg
Пример #17
0
    def respond_choose_sense(self, content):
        """Return response content to choose-sense request."""
        agent_clj = content.get('agent')
        agent = self.get_agent(agent_clj)
        if not agent:
            return self.make_failure('MISSING_AGENT')
        add_agent_type(agent)

        def _get_urls(agent):
            urls = {
                k: get_identifiers_url(k, v)
                for k, v in agent.db_refs.items()
                if k not in {'TEXT', 'TYPE', 'TRIPS'}
            }
            return urls

        msg = KQMLPerformative('SUCCESS')
        msg.set('agent', self.make_cljson(agent))

        description = None
        if 'UP' in agent.db_refs:
            description = uniprot_client.get_function(agent.db_refs['UP'])
        if description:
            msg.sets('description', description)

        urls = _get_urls(agent)
        if urls:
            url_parts = [
                KQMLList([':name',
                          KQMLString(k), ':dblink',
                          KQMLString(v)]) for k, v in urls.items()
            ]
            url_list = KQMLList()
            for url_part in url_parts:
                url_list.append(url_part)
            msg.set('id-urls', url_list)

        return msg
Пример #18
0
 def respond_model_undo(self, content):
     """Return response content to model-undo request."""
     res = self.mra.model_undo()
     no_display = content.get('no-display')
     new_model_id = res.get('model_id')
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(new_model_id))
     # Add the INDRA model json
     model = res.get('model')
     model_msg = encode_indra_stmts(model)
     msg.sets('model', model_msg)
     # Add the diagram
     diagrams = res.get('diagrams')
     if not no_display:
         if diagrams:
             rxn_diagram = diagrams.get('reactionnetwork')
             if rxn_diagram:
                 msg.sets('diagram', rxn_diagram)
             if not self.testing:
                 self.send_display_model(model_msg, diagrams)
     return msg
Пример #19
0
 def respond_expand_model(self, content):
     """Return response content to expand-model request."""
     descr = content.gets('description')
     model_id = self._get_model_id(content)
     descr_format = content.gets('format')
     no_display = content.get('no-display')
     try:
         if not descr_format or descr_format == 'ekb':
             res = self.mra.expand_model_from_ekb(descr, model_id)
         elif descr_format == 'indra_json':
             res = self.mra.expand_model_from_json(descr, model_id)
         else:
             err_msg = 'Invalid description format: %s' % descr_format
             raise InvalidModelDescriptionError(err_msg)
     except Exception as e:
         raise InvalidModelDescriptionError(e)
     new_model_id = res.get('model_id')
     if new_model_id is None:
         raise InvalidModelDescriptionError()
     # Start a SUCCESS message
     msg = KQMLPerformative('SUCCESS')
     # Add the model id
     msg.set('model-id', str(new_model_id))
     # Add the INDRA model json
     model = res.get('model')
     model_msg = encode_indra_stmts(model)
     msg.sets('model', model_msg)
     # Add the INDRA model new json
     model_new = res.get('model_new')
     if model_new:
         model_new_msg = encode_indra_stmts(model_new)
         msg.sets('model-new', model_new_msg)
     # Add the diagram
     if not no_display:
         diagrams = res.get('diagrams')
         if diagrams:
             rxn_diagram = diagrams.get('reactionnetwork')
             if rxn_diagram:
                 msg.sets('diagram', rxn_diagram)
             if not self.testing:
                 self.send_display_model(model_msg, diagrams)
     ambiguities = res.get('ambiguities')
     if ambiguities:
         ambiguities_msg = get_ambiguities_msg(ambiguities)
         msg.set('ambiguities', ambiguities_msg)
     return msg
Пример #20
0
    def respond_expand_model(self, content):
        """Return response content to expand-model request."""
        model_id = self._get_model_id(content)
        descr_format = content.gets('format')
        no_display = content.get('no-display')
        try:
            if not descr_format:
                descr = content.get('description')
                js = json.dumps(self.converter.cl_to_json(descr))
                res = self.mra.expand_model_from_json(js, model_id)
            elif descr_format == 'ekb':
                descr = content.gets('description')
                res = self.mra.expand_model_from_ekb(descr, model_id)
            elif descr_format == 'indra_json':
                descr = content.gets('description')
                res = self.mra.expand_model_from_json(descr, model_id)
            else:
                err_msg = 'Invalid description format: %s' % descr_format
                raise InvalidModelDescriptionError(err_msg)
        except Exception as e:
            raise InvalidModelDescriptionError(e)
        new_model_id = res.get('model_id')
        if new_model_id is None:
            raise InvalidModelDescriptionError()
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', str(new_model_id))
        # Add the INDRA model json
        model = res.get('model')
        model_msg = encode_indra_stmts(model)
        msg.set('model', model_msg)
        # Add the INDRA model new json
        model_new = res.get('model_new')

        # Indicate whether the goal has been explained
        has_expl = res.get('has_explanation')
        if has_expl is not None:
            msg.set('has_explanation', str(has_expl).upper())

        # Send out various model diagnosis messages
        diagnostic_tells = self.send_model_diagnoses(res)
        if diagnostic_tells:
            suggs = KQMLList()
            for text in diagnostic_tells:
                sugg = KQMLList()
                sugg.sets('TEXT', text)
                suggs.append(sugg)
            msg.set('suggestions', suggs)

        # Once we sent out the diagnosis messages, we make sure we keep
        # track of whether we have an explanation
        if has_expl:
            self.have_explanation = True

        if model_new and (descr_format == 'ekb' or not descr_format):
            self.send_background_support(model_new)
        if model_new:
            model_new_msg = encode_indra_stmts(model_new)
            msg.set('model-new', model_new_msg)
        # Add the diagram
        if not no_display:
            diagrams = res.get('diagrams')
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)
        # Analyze the model for issues

        # Report ambiguities
        ambiguities = res.get('ambiguities')
        if ambiguities:
            ambiguities_msg = get_ambiguities_msg(ambiguities)
            msg.set('ambiguities', ambiguities_msg)
        return msg
Пример #21
0
    def respond_get_indra_representation(self, content):
        """Return the INDRA CL-JSON corresponding to the given content."""
        # First get the KQML graph object for the given context
        context = content.get('context').to_string()
        graph = KQMLGraph(context)

        # Next, we look at each of the IDs that we need to build EKBs for
        # and build the EKBs one by one
        ekbs = []
        for trips_id_obj in content.get('ids'):
            trips_id = trips_id_obj.to_string()
            if trips_id.startswith('ONT::'):
                trips_id = trips_id[5:]

            try:
                # Turn the graph into an EKB XML object, expanding around
                # the given ID.
                ekb = EKB(graph, trips_id)
                logger.debug('Extracted EKB: %s' % ekb.to_string())
                ekbs.append((trips_id, ekb))
            except Exception as e:
                logger.error('Encountered an error while parsing: %s.' %
                             content.to_string())
                logger.exception(e)

        msg = KQMLPerformative('done')
        # If we didn't get any EKBs, we just return an empty result
        if not ekbs:
            msg.set('result', KQMLList())
            return msg
        # If there is one EKB then we work with that
        elif len(ekbs) == 1:
            ekbs_to_extract = ekbs
        # If there are multiple EKBs, we need to make sure that we are not
        # extracting IDs passed for embedded events (whose root ID, i.e.,
        # trips_id is somewhere inside another EKB already). We therefore
        # iterate over all the EKBs and check this condition. If the EKB
        # isn't subsumed, it's added to a list of ones to be extracted.
        else:
            ekbs_to_extract = []
            for idx, (trips_id, ekb) in enumerate(ekbs):
                other_ekbs = ekbs[:idx] + ekbs[idx + 1:]
                other_components = set.union(
                    *[set(e.components) for _, e in other_ekbs])
                if trips_id in other_components:
                    continue
                ekbs_to_extract.append((trips_id, ekb))

        # Finally, we extract entities (Agents or Statements) from the given
        # EKB, and add each extraction to a list
        entities = KQMLList()
        for trips_id, ekb in ekbs_to_extract:
            entity = ekb.get_entity()
            if entity is None:
                logger.info("Could not resolve entity from: %s. " %
                            ekb.to_string())
            else:
                js = self.make_cljson(entity)
                entities.append(js)

        if len(entities) == 1:
            msg.sets('result', entities[0])
        else:
            msg.set('result', entities)
        return msg
Пример #22
0
 def error_reply(self, msg, comment):
     reply_msg = KQMLPerformative('error')
     reply_msg.sets('comment', comment)
     self.reply(msg, reply_msg)
Пример #23
0
 def error_reply(self, msg, comment):
     reply_msg = KQMLPerformative('error')
     reply_msg.sets('comment', comment)
     self.reply(msg, reply_msg)
Пример #24
0
    def respond_build_model(self, content):
        """Return response content to build-model request."""
        descr_format = content.gets('format')
        if descr_format:
            logger.info('Building model from format: %s' % descr_format)
        no_display = content.get('no-display')
        if not descr_format:
            descr = content.get('description')
            js_data = self.converter.cl_to_json(descr)
            if isinstance(js_data, dict):
                logger.error('JSON data should be a list not a dict.')
                raise InvalidModelDescriptionError("Model description should "
                                                   "be a list of events.")
            js = json.dumps(js_data)
            res = self.mra.build_model_from_json(js)
        elif descr_format == 'ekb':
            descr = content.gets('description')
            res = self.mra.build_model_from_ekb(descr)
        elif descr_format == 'indra_json':
            descr = content.gets('description')
            res = self.mra.build_model_from_json(descr)
        else:
            err_msg = 'Invalid description format: %s' % descr_format
            raise InvalidModelDescriptionError(err_msg)
        if res.get('error'):
            raise InvalidModelDescriptionError(res.get('error'))
        model_id = res.get('model_id')
        if model_id is None:
            raise InvalidModelDescriptionError()
        # Start a SUCCESS message
        msg = KQMLPerformative('SUCCESS')
        # Add the model id
        msg.set('model-id', str(model_id))
        # Add the INDRA model json
        model = res.get('model')
        if model and (descr_format == 'ekb' or not descr_format):
            self.send_background_support(model)
        model_msg = encode_indra_stmts(model)
        msg.set('model', model_msg)
        # Add the diagrams
        diagrams = res.get('diagrams')
        if not no_display:
            if diagrams:
                rxn_diagram = diagrams.get('reactionnetwork')
                if rxn_diagram:
                    msg.sets('diagram', rxn_diagram)
                self.send_display_model(diagrams)

        # Indicate whether the goal has been explained
        has_expl = res.get('has_explanation')
        if has_expl is not None:
            msg.set('has_explanation', str(has_expl).upper())

        # Send out various model diagnosis messages
        diagnostic_tells = self.send_model_diagnoses(res)
        if diagnostic_tells:
            suggs = KQMLList()
            for text in diagnostic_tells:
                sugg = KQMLList()
                sugg.sets('TEXT', text)
                suggs.append(sugg)
            msg.set('suggestions', suggs)

        # Once we sent out the diagnosis messages, we make sure we keep
        # track of whether we have an explanation
        if has_expl:
            self.have_explanation = True

        # Analyze the model for issues
        # Report ambiguities
        ambiguities = res.get('ambiguities')
        if ambiguities:
            ambiguities_msg = get_ambiguities_msg(ambiguities)
            msg.set('ambiguities', ambiguities_msg)
        return msg