Пример #1
0
    def __call__(self, rated_pop: Sequence[Tuple[Number, np.ndarray]]) -> Tuple[np.ndarray, ...]:
        couples = ga.roulette_wheel_cost_selection(rated_pop)
        offspring = (ga.single_point_crossover(*couple) for couple in couples)
        children = tuple(child for pair in offspring for child in pair)

        for i, j in it.product(range(len(children)), range(len(children[0]))):
            if self._rand.random() < self._mutation_prob:
                children[i][j] = 1 - children[i][j]

        return children
Пример #2
0
def next_transformation_gen(transforms: Tuple[Tuple[int, np.ndarray], ...])\
        -> Tuple[np.ndarray, ...]:
    # couples = ga.roulette_wheel_rank_selection(transforms)
    couples = ga.roulette_wheel_cost_selection(transforms)
    # couples = ga.tournament_selection(transforms, 2)
    # couples = ga.uniform_random_pairing_selection(transforms)
    offspring = (ga.single_point_crossover(*couple) for couple in couples)
    children = tuple(child for pair in offspring for child in pair)
    mutate(children, .1)
    return children
    def __call__(
        self,
        rated_pop: Sequence[Tuple[Number,
                                  np.ndarray]]) -> Tuple[np.ndarray, ...]:
        couples = ga.roulette_wheel_cost_selection(rated_pop)
        offspring = (ga.single_point_crossover(*couple) for couple in couples)
        children = tuple(it.chain(*offspring))

        for i, j in it.product(range(len(children)), range(len(children[0]))):
            if self._rand.random() < .01:
                children[i][j] = self._rand.choice(self._labels)

        return children